Documentation

Mathlib.CategoryTheory.Monoidal.Cartesian.CommGrp_

Yoneda embedding of CommGrp C #

@[deprecated CategoryTheory.CommGrpObj (since := "2025-09-13")]

Alias of CategoryTheory.CommGrpObj.


Abbreviation for an unbundled commutative group object. It is a group object that is a commutative monoid object.

Equations
    Instances For

      If X represents a presheaf of commutative groups, then X is a commutative group object.

      Equations
        Instances For
          @[deprecated CategoryTheory.CommGrpObj.ofRepresentableBy (since := "2025-09-13")]

          Alias of CategoryTheory.CommGrpObj.ofRepresentableBy.


          If X represents a presheaf of commutative groups, then X is a commutative group object.

          Equations
            Instances For

              The yoneda embedding of CommGrp C into presheaves of groups.

              Equations
                Instances For
                  @[simp]
                  theorem CategoryTheory.yonedaCommGrpGrpObj_map {C : Type u} [Category.{v, u} C] [CartesianMonoidalCategory C] [BraidedCategory C] (G : CommGrp C) {H I : (Grp C)ᵒᵖ} (f : H I) :
                  (yonedaCommGrpGrpObj G).map f = CommGrpCat.ofHom { toFun := fun (x : Opposite.unop H G.toGrp) => CategoryStruct.comp f.unop x, map_one' := , map_mul' := }

                  The yoneda embedding of CommGrp C into presheaves of groups.

                  Equations
                    Instances For
                      @[simp]
                      theorem CategoryTheory.yonedaCommGrpGrp_map_app {C : Type u} [Category.{v, u} C] [CartesianMonoidalCategory C] [BraidedCategory C] {X₁ X₂ : CommGrp C} (ψ : X₁ X₂) (Y : (Grp C)ᵒᵖ) :
                      (yonedaCommGrpGrp.map ψ).app Y = CommGrpCat.ofHom { toFun := fun (x : Opposite.unop Y X₁.toGrp) => CategoryStruct.comp x ψ.hom, map_one' := , map_mul' := }