Documentation

Mathlib.CategoryTheory.Monoidal.Grp_

The category of groups in a Cartesian monoidal category #

We define group objects in Cartesian monoidal categories.

We show that the associativity diagram of a group object is always Cartesian and deduce that morphisms of group objects commute with taking inverses.

We show that a finite-product-preserving functor takes group objects to group objects.

@[deprecated CategoryTheory.GrpObj (since := "2025-09-13")]

Alias of CategoryTheory.GrpObj.


A group object internal to a cartesian monoidal category. Also see the bundled Grp.

Equations
    Instances For

      The inverse in a group object

      Equations
        Instances For

          The inverse in a group object

          Equations
            Instances For
              structure CategoryTheory.Grp (C : Type u₁) [Category.{v₁, u₁} C] [CartesianMonoidalCategory C] :
              Type (max u₁ v₁)

              A group object in a Cartesian monoidal category.

              • X : C

                The underlying object in the ambient monoidal category

              • grp : GrpObj self.X
              Instances For
                @[deprecated CategoryTheory.Grp (since := "2025-10-13")]

                Alias of CategoryTheory.Grp.


                A group object in a Cartesian monoidal category.

                Equations
                  Instances For
                    @[reducible, inline]

                    A group object is a monoid object.

                    Equations
                      Instances For
                        @[deprecated CategoryTheory.Grp.toMon (since := "2025-09-15")]

                        Alias of CategoryTheory.Grp.toMon.


                        A group object is a monoid object.

                        Equations
                          Instances For

                            The trivial group object.

                            Equations
                              Instances For
                                @[deprecated CategoryTheory.Grp.id_hom_hom (since := "2025-12-18")]

                                Alias of CategoryTheory.Grp.id_hom_hom.

                                @[deprecated CategoryTheory.Grp.comp_hom_hom (since := "2025-12-18")]

                                Alias of CategoryTheory.Grp.comp_hom_hom.

                                theorem CategoryTheory.Grp.hom_ext {C : Type u₁} [Category.{v₁, u₁} C] [CartesianMonoidalCategory C] {A B : Grp C} (f g : A B) (h : f.hom.hom = g.hom.hom) :
                                f = g

                                Constructor for morphisms in Grp C.

                                Equations
                                  Instances For

                                    Construct a morphism A ⟶ B of Grp C from a map f : A.X ⟶ A.X and a IsMonHom f instance.

                                    Equations
                                      Instances For

                                        Constructor for morphisms in Grp_ C.

                                        Equations
                                          Instances For
                                            @[simp]
                                            theorem CategoryTheory.Grp.comp' {C : Type u₁} [Category.{v₁, u₁} C] [CartesianMonoidalCategory C] {A₁ A₂ A₃ : Grp C} (f : A₁ A₂) (g : A₂ A₃) :
                                            @[reducible, inline]

                                            Transfer GrpObj along an isomorphism.

                                            Equations
                                              Instances For

                                                The map (· * f).

                                                Equations
                                                  Instances For

                                                    The associativity diagram of a group object is Cartesian.

                                                    In fact, any monoid object whose associativity diagram is Cartesian can be made into a group object (we do not prove this in this file), so we should expect that many properties of group objects follow from this result.

                                                    @[simp]

                                                    Morphisms of group objects preserve inverses.

                                                    @[simp]

                                                    Morphisms of group objects preserve inverses.

                                                    @[deprecated CategoryTheory.GrpObj.toMonObj_injective (since := "2025-09-09")]

                                                    Alias of CategoryTheory.GrpObj.toMonObj_injective.

                                                    theorem CategoryTheory.GrpObj.ext {C : Type u₁} [Category.{v₁, u₁} C] [CartesianMonoidalCategory C] {X : C} (h₁ h₂ : GrpObj X) (H : h₁.toMonObj = h₂.toMonObj) :
                                                    h₁ = h₂

                                                    The forgetful functor from group objects to monoid objects.

                                                    Equations
                                                      Instances For
                                                        @[deprecated CategoryTheory.Grp.forget₂Mon (since := "2025-09-15")]

                                                        Alias of CategoryTheory.Grp.forget₂Mon.


                                                        The forgetful functor from group objects to monoid objects.

                                                        Equations
                                                          Instances For

                                                            The forgetful functor from group objects to monoid objects is fully faithful.

                                                            Equations
                                                              Instances For
                                                                @[deprecated CategoryTheory.Grp.fullyFaithfulForget₂Mon (since := "2025-09-15")]

                                                                Alias of CategoryTheory.Grp.fullyFaithfulForget₂Mon.


                                                                The forgetful functor from group objects to monoid objects is fully faithful.

                                                                Equations
                                                                  Instances For

                                                                    The forgetful functor from group objects to the ambient category.

                                                                    Equations
                                                                      Instances For
                                                                        @[simp]
                                                                        theorem CategoryTheory.Grp.forget_map (C : Type u₁) [Category.{v₁, u₁} C] [CartesianMonoidalCategory C] {X✝ Y✝ : Grp C} (f : X✝ Y✝) :
                                                                        (forget C).map f = f.hom.hom
                                                                        def CategoryTheory.Grp.mkIso' {C : Type u₁} [Category.{v₁, u₁} C] [CartesianMonoidalCategory C] {G H : C} (e : G H) [GrpObj G] [GrpObj H] [IsMonHom e.hom] :
                                                                        { X := G, grp := inst✝ } { X := H, grp := inst✝¹ }

                                                                        Construct an isomorphism of group objects by giving a monoid isomorphism between the underlying objects.

                                                                        Equations
                                                                          Instances For
                                                                            @[reducible, inline]

                                                                            Construct an isomorphism of group objects by giving an isomorphism between the underlying objects and checking compatibility with unit and multiplication only in the forward direction.

                                                                            Equations
                                                                              Instances For
                                                                                @[deprecated CategoryTheory.Grp.mkIso_hom_hom_hom (since := "2025-12-18")]

                                                                                Alias of CategoryTheory.Grp.mkIso_hom_hom_hom.

                                                                                @[deprecated CategoryTheory.Grp.mkIso_inv_hom_hom (since := "2025-12-18")]

                                                                                Alias of CategoryTheory.Grp.mkIso_inv_hom_hom.

                                                                                Grp C is cartesian-monoidal #

                                                                                @[simp]
                                                                                theorem CategoryTheory.Grp.tensorHom_hom {C : Type u₁} [Category.{v₁, u₁} C] [CartesianMonoidalCategory C] [BraidedCategory C] {X₁✝ Y₁✝ X₂✝ Y₂✝ : Grp C} (f : X₁✝ Y₁✝) (g : X₂✝ Y₂✝) :
                                                                                @[deprecated CategoryTheory.Grp.whiskerLeft_hom_hom (since := "2025-12-18")]

                                                                                Alias of CategoryTheory.Grp.whiskerLeft_hom_hom.

                                                                                @[deprecated CategoryTheory.Grp.whiskerRight_hom_hom (since := "2025-12-18")]

                                                                                Alias of CategoryTheory.Grp.whiskerRight_hom_hom.

                                                                                @[deprecated CategoryTheory.Grp.associator_hom_hom_hom (since := "2025-12-18")]

                                                                                Alias of CategoryTheory.Grp.associator_hom_hom_hom.

                                                                                @[deprecated CategoryTheory.Grp.associator_inv_hom_hom (since := "2025-12-18")]

                                                                                Alias of CategoryTheory.Grp.associator_inv_hom_hom.

                                                                                @[deprecated CategoryTheory.Grp.braiding_hom_hom_hom (since := "2025-12-18")]

                                                                                Alias of CategoryTheory.Grp.braiding_hom_hom_hom.

                                                                                @[deprecated CategoryTheory.Grp.braiding_inv_hom_hom (since := "2025-12-18")]

                                                                                Alias of CategoryTheory.Grp.braiding_inv_hom_hom.

                                                                                @[reducible, inline]

                                                                                The image of a group object under a monoidal functor is a group object.

                                                                                Equations
                                                                                  Instances For

                                                                                    A finite-product-preserving functor takes group objects to group objects.

                                                                                    Equations
                                                                                      Instances For

                                                                                        If F : C ⥤ D is a fully faithful monoidal functor, then GrpCat(F) : GrpCat C ⥤ GrpCat D is fully faithful too.

                                                                                        Equations
                                                                                          Instances For

                                                                                            The identity functor is also the identity on group objects.

                                                                                            Equations
                                                                                              Instances For

                                                                                                The composition functor is also the composition on group objects.

                                                                                                Equations
                                                                                                  Instances For

                                                                                                    Natural transformations between functors lift to group objects.

                                                                                                    Equations
                                                                                                      Instances For

                                                                                                        Natural isomorphisms between functors lift to group objects.

                                                                                                        Equations
                                                                                                          Instances For

                                                                                                            mapGrp is functorial in the left-exact functor.

                                                                                                            Equations
                                                                                                              Instances For
                                                                                                                @[reducible, inline]

                                                                                                                Pullback a group object along a fully faithful monoidal functor.

                                                                                                                Equations
                                                                                                                  Instances For
                                                                                                                    @[deprecated CategoryTheory.Functor.FullyFaithful.grpObj (since := "2025-09-13")]

                                                                                                                    Alias of CategoryTheory.Functor.FullyFaithful.grpObj.


                                                                                                                    Pullback a group object along a fully faithful monoidal functor.

                                                                                                                    Equations
                                                                                                                      Instances For
                                                                                                                        @[simp]

                                                                                                                        The essential image of a full and faithful functor between cartesian-monoidal categories is the same on group objects as on objects.

                                                                                                                        An adjunction of monoidal functors lifts to an adjunction of their lifts to group objects.

                                                                                                                        Equations
                                                                                                                          Instances For

                                                                                                                            An equivalence of categories lifts to an equivalence of their group objects.

                                                                                                                            Equations
                                                                                                                              Instances For