Documentation Verification Report

Grp_

📁 Source: Mathlib/CategoryTheory/Monoidal/Grp_.lean

Statistics

MetricCount
DefinitionsmapGrp, mapGrp, grpObj, grp_Class, mapGrp, grpObjObj, mapGrp, instBraided, instMonoidal, mapGrpCompIso, mapGrpFunctor, mapGrpIdIso, mapGrpNatIso, mapGrpNatTrans, X, forget, forget₂Mon, forget₂Mon_, fullyFaithfulForget₂Mon, fullyFaithfulForget₂Mon_, grp, homMk, homMk', homMk'', instBraidedCategory, instCartesianMonoidalCategory, instCategory, instInhabited, instMonoidalCategory, instMonoidalCategoryStruct, instMonoidalMonForget₂Mon, mkIso, mkIso', toMon, toMon_, trivial, uniqueHomFromTrivial, GrpObj, instTensorUnit, inv, mulRight, ofIso, instTensorObj, toMonObj, Grp_Class, termι, «termι[_]»
47
TheoremsmapGrp_counit, mapGrp_unit, mapGrp_counitIso, mapGrp_functor, mapGrp_inverse, mapGrp_unitIso, mapGrp, mapGrp, grpObj_inv, grpObj_mul, grpObj_one, mapGrp_preimage, comp_mapGrp_mul, comp_mapGrp_one, essImage_mapGrp, mapGrpCompIso_hom_app_hom_hom, mapGrpCompIso_inv_app_hom_hom, mapGrpFunctor_map_app, mapGrpFunctor_obj, mapGrpIdIso_hom_app_hom_hom, mapGrpIdIso_inv_app_hom_hom, mapGrpNatIso_hom_app_hom_hom, mapGrpNatIso_inv_app_hom_hom, mapGrpNatTrans_app_hom_hom, mapGrp_id_mul, mapGrp_id_one, mapGrp_map_hom_hom, mapGrp_obj_X, mapGrp_obj_grp_inv, mapGrp_obj_grp_mul, mapGrp_obj_grp_one, ι_def, ι_def_assoc, associator_hom_hom, associator_hom_hom_hom, associator_inv_hom, associator_inv_hom_hom, braiding_hom_hom, braiding_hom_hom_hom, braiding_inv_hom, braiding_inv_hom_hom, comp', comp_hom, comp_hom_hom, forget_map, forget_obj, forget₂Mon_comp_forget, forget₂Mon_map_hom, forget₂Mon_obj_X, forget₂Mon_obj_mul, forget₂Mon_obj_one, fst_hom, fst_hom_hom, homMk''_hom_hom, homMk'_hom, homMk_hom_hom, hom_ext, hom_ext_iff, id', id_hom, id_hom_hom, instFaithfulForget, instFaithfulMonForget₂Mon, instFullMonForget₂Mon, instHasInitial, instIsIsoHomHomMon, leftUnitor_hom_hom, leftUnitor_hom_hom_hom, leftUnitor_inv_hom, leftUnitor_inv_hom_hom, lift_hom, mkIso'_hom_hom_hom, mkIso'_inv_hom_hom, mkIso_hom_hom, mkIso_hom_hom_hom, mkIso_inv_hom, mkIso_inv_hom_hom, rightUnitor_hom_hom, rightUnitor_hom_hom_hom, rightUnitor_inv_hom, rightUnitor_inv_hom_hom, snd_hom, snd_hom_hom, tensorHom_hom, tensorObj_X, tensorObj_mul, tensorObj_one, tensorUnit_X, tensorUnit_mul, tensorUnit_one, toMon_X, trivial_X, trivial_grp_inv, trivial_grp_mul, trivial_grp_one, whiskerLeft_hom, whiskerLeft_hom_hom, whiskerRight_hom, whiskerRight_hom_hom, δ_def, ε_def, η_def, μ_def, eq_lift_inv_left, eq_lift_inv_right, ext, ext_iff, instIsIsoInv, inv_comp_inv, inv_comp_inv_assoc, inv_def, inv_hom, inv_hom_assoc, inv_inv, isPullback, left_inv, left_inv_assoc, lift_comp_inv_left, lift_comp_inv_left_assoc, lift_comp_inv_right, lift_comp_inv_right_assoc, lift_inv_comp_left, lift_inv_comp_left_assoc, lift_inv_comp_right, lift_inv_comp_right_assoc, lift_inv_left_eq, lift_inv_right_eq, lift_left_mul_ext, mulRight_hom, mulRight_inv, mulRight_one, mul_inv, mul_inv_assoc, mul_inv_rev, mul_inv_rev_assoc, ofIso_inv, ofIso_mul, ofIso_one, right_inv, right_inv_assoc, tensorHom_inv_inv_mul, tensorHom_inv_inv_mul_assoc, inv_def, toMonObj_injective, toMon_Class_injective
145
Total192

CategoryTheory

Definitions

NameCategoryTheorems
GrpObj 📖CompData
2 mathmath: GrpObj.toMon_Class_injective, GrpObj.toMonObj_injective
Grp_Class 📖CompOp

CategoryTheory.Adjunction

Definitions

NameCategoryTheorems
mapGrp 📖CompOp
2 mathmath: mapGrp_unit, mapGrp_counit

Theorems

NameKindAssumesProvesValidatesDepends On
mapGrp_counit 📖mathematicalcounit
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
CategoryTheory.Functor.mapGrp
mapGrp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.Monoidal.instComp
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Functor.id
CategoryTheory.Iso.inv
CategoryTheory.Functor.mapGrpCompIso
CategoryTheory.Functor.Monoidal.instId
CategoryTheory.Functor.mapGrpNatTrans
CategoryTheory.Iso.hom
CategoryTheory.Functor.mapGrpIdIso
mapGrp_unit 📖mathematicalunit
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
CategoryTheory.Functor.mapGrp
mapGrp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.Monoidal.instId
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Functor.mapGrpIdIso
CategoryTheory.Functor.Monoidal.instComp
CategoryTheory.Functor.mapGrpNatTrans
CategoryTheory.Iso.hom
CategoryTheory.Functor.mapGrpCompIso

CategoryTheory.Equivalence

Definitions

NameCategoryTheorems
mapGrp 📖CompOp
4 mathmath: mapGrp_counitIso, mapGrp_inverse, mapGrp_unitIso, mapGrp_functor

Theorems

NameKindAssumesProvesValidatesDepends On
mapGrp_counitIso 📖mathematicalcounitIso
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
mapGrp
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.mapGrp
inverse
functor
CategoryTheory.Functor.Monoidal.instComp
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Functor.id
CategoryTheory.Iso.symm
CategoryTheory.Functor.mapGrpCompIso
CategoryTheory.Functor.Monoidal.instId
CategoryTheory.Functor.mapGrpNatIso
CategoryTheory.Functor.mapGrpIdIso
mapGrp_functor 📖mathematicalfunctor
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
mapGrp
CategoryTheory.Functor.mapGrp
mapGrp_inverse 📖mathematicalinverse
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
mapGrp
CategoryTheory.Functor.mapGrp
mapGrp_unitIso 📖mathematicalunitIso
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
mapGrp
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.mapGrp
CategoryTheory.Functor.Monoidal.instId
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Functor.comp
functor
inverse
CategoryTheory.Iso.symm
CategoryTheory.Functor.mapGrpIdIso
CategoryTheory.Functor.Monoidal.instComp
CategoryTheory.Functor.mapGrpNatIso
CategoryTheory.Functor.mapGrpCompIso

CategoryTheory.Functor

Definitions

NameCategoryTheorems
grpObjObj 📖CompOp
4 mathmath: map_inv', obj.ι_def, mapGrp_map_hom_hom, obj.ι_def_assoc
mapGrp 📖CompOp
33 mathmath: CategoryTheory.Equivalence.mapGrp_counitIso, mapCommGrp_obj_grp_one, FullyFaithful.mapGrp_preimage, comp_mapGrp_mul, mapGrp_id_mul, mapGrpIdIso_hom_app_hom_hom, mapGrpFunctor_obj, mapGrp_obj_grp_one, mapGrp_id_one, CategoryTheory.Adjunction.mapGrp_unit, essImage_mapGrp, mapGrpNatIso_hom_app_hom_hom, mapGrpFunctor_map_app, CategoryTheory.Equivalence.mapGrp_inverse, mapGrpCompIso_hom_app_hom_hom, CategoryTheory.Equivalence.mapGrp_unitIso, mapGrp_map_hom_hom, Full.mapGrp, mapGrpIdIso_inv_app_hom_hom, mapGrp_obj_grp_mul, mapGrpNatTrans_app_hom_hom, mapGrpNatIso_inv_app_hom_hom, mapGrpCompIso_inv_app_hom_hom, mapCommGrp_map_hom_hom_hom, mapGrp_obj_grp_inv, mapCommGrpNatTrans_app_hom_hom_hom, Faithful.mapGrp, mapCommGrp_obj_grp_mul, CategoryTheory.Equivalence.mapGrp_functor, mapGrp_obj_X, mapCommGrp_obj_grp_inv, CategoryTheory.Adjunction.mapGrp_counit, comp_mapGrp_one
mapGrpCompIso 📖CompOp
6 mathmath: CategoryTheory.Equivalence.mapGrp_counitIso, CategoryTheory.Adjunction.mapGrp_unit, mapGrpCompIso_hom_app_hom_hom, CategoryTheory.Equivalence.mapGrp_unitIso, mapGrpCompIso_inv_app_hom_hom, CategoryTheory.Adjunction.mapGrp_counit
mapGrpFunctor 📖CompOp
2 mathmath: mapGrpFunctor_obj, mapGrpFunctor_map_app
mapGrpIdIso 📖CompOp
6 mathmath: CategoryTheory.Equivalence.mapGrp_counitIso, mapGrpIdIso_hom_app_hom_hom, CategoryTheory.Adjunction.mapGrp_unit, CategoryTheory.Equivalence.mapGrp_unitIso, mapGrpIdIso_inv_app_hom_hom, CategoryTheory.Adjunction.mapGrp_counit
mapGrpNatIso 📖CompOp
4 mathmath: CategoryTheory.Equivalence.mapGrp_counitIso, mapGrpNatIso_hom_app_hom_hom, CategoryTheory.Equivalence.mapGrp_unitIso, mapGrpNatIso_inv_app_hom_hom
mapGrpNatTrans 📖CompOp
3 mathmath: CategoryTheory.Adjunction.mapGrp_unit, mapGrpNatTrans_app_hom_hom, CategoryTheory.Adjunction.mapGrp_counit

Theorems

NameKindAssumesProvesValidatesDepends On
comp_mapGrp_mul 📖mathematicalCategoryTheory.MonObj.mul
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Grp.X
obj
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
mapGrp
comp
Monoidal.instComp
CategoryTheory.GrpObj.toMonObj
CategoryTheory.Grp.grp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
LaxMonoidal.μ
LaxMonoidal.comp
Monoidal.toLaxMonoidal
map
comp_mapGrp_one 📖mathematicalCategoryTheory.MonObj.one
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Grp.X
obj
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
mapGrp
comp
Monoidal.instComp
CategoryTheory.GrpObj.toMonObj
CategoryTheory.Grp.grp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
LaxMonoidal.ε
LaxMonoidal.comp
Monoidal.toLaxMonoidal
map
essImage_mapGrp 📖mathematicalessImage
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
mapGrp
CategoryTheory.Grp.X
FullyFaithful.map_preimage
Monoidal.ε_η_assoc
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
Monoidal.μ_δ_assoc
mapGrpCompIso_hom_app_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
obj
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Grp.forget₂Mon
CategoryTheory.Grp.X
mapGrp
comp
Monoidal.instComp
CategoryTheory.Grp.grp
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp.toMon
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
mapGrpCompIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
mapGrpCompIso_inv_app_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
obj
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Grp.forget₂Mon
CategoryTheory.Grp.X
comp
mapGrp
CategoryTheory.Grp.grp
Monoidal.instComp
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp.toMon
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
mapGrpCompIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
mapGrpFunctor_map_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
mapGrp
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor
category
CategoryTheory.leftExactFunctor
Monoidal.ofChosenFiniteProducts
map
CategoryTheory.LeftExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
mapGrpFunctor
CategoryTheory.Grp.homMk''
obj
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Grp.X
mapGrpFunctor_obj 📖mathematicalobj
CategoryTheory.LeftExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor
category
CategoryTheory.leftExactFunctor
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
mapGrpFunctor
mapGrp
CategoryTheory.ObjectProperty.FullSubcategory.obj
Monoidal.ofChosenFiniteProducts
mapGrpIdIso_hom_app_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
obj
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Grp.forget₂Mon
CategoryTheory.Grp.X
mapGrp
id
Monoidal.instId
CategoryTheory.Grp.grp
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp.toMon
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
mapGrpIdIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
mapGrpIdIso_inv_app_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
obj
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Grp.forget₂Mon
CategoryTheory.Grp.X
id
CategoryTheory.Grp.grp
mapGrp
Monoidal.instId
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp.toMon
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
mapGrpIdIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
mapGrpNatIso_hom_app_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
obj
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Grp.forget₂Mon
CategoryTheory.Grp.X
mapGrp
CategoryTheory.Grp.grp
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp.toMon
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
mapGrpNatIso
mapGrpNatIso_inv_app_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
obj
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Grp.forget₂Mon
CategoryTheory.Grp.X
mapGrp
CategoryTheory.Grp.grp
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp.toMon
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
mapGrpNatIso
mapGrpNatTrans_app_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
obj
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
mapMon
Monoidal.toLaxMonoidal
CategoryTheory.Grp.toMon
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
mapGrp
CategoryTheory.NatTrans.app
mapGrpNatTrans
CategoryTheory.Grp.X
mapGrp_id_mul 📖mathematicalCategoryTheory.MonObj.mul
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Grp.X
obj
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
mapGrp
id
Monoidal.instId
CategoryTheory.GrpObj.toMonObj
CategoryTheory.Grp.grp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.CategoryStruct.id
mapGrp_id_one 📖mathematicalCategoryTheory.MonObj.one
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Grp.X
obj
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
mapGrp
id
Monoidal.instId
CategoryTheory.GrpObj.toMonObj
CategoryTheory.Grp.grp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.CategoryStruct.id
mapGrp_map_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
obj
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
mapMon
Monoidal.toLaxMonoidal
CategoryTheory.Grp.toMon
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp
CategoryTheory.Grp.X
grpObjObj
CategoryTheory.Grp.grp
map
CategoryTheory.Grp.instCategory
mapGrp
mapGrp_obj_X 📖mathematicalCategoryTheory.Grp.X
obj
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
mapGrp
mapGrp_obj_grp_inv 📖mathematicalCategoryTheory.GrpObj.inv
obj
CategoryTheory.Grp.X
CategoryTheory.Grp.grp
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
mapGrp
map
mapGrp_obj_grp_mul 📖mathematicalCategoryTheory.MonObj.mul
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
obj
CategoryTheory.Grp.X
CategoryTheory.GrpObj.toMonObj
CategoryTheory.Grp.grp
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
mapGrp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
LaxMonoidal.μ
Monoidal.toLaxMonoidal
map
mapGrp_obj_grp_one 📖mathematicalCategoryTheory.MonObj.one
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
obj
CategoryTheory.Grp.X
CategoryTheory.GrpObj.toMonObj
CategoryTheory.Grp.grp
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
mapGrp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
LaxMonoidal.ε
Monoidal.toLaxMonoidal
map

CategoryTheory.Functor.Faithful

Theorems

NameKindAssumesProvesValidatesDepends On
mapGrp 📖mathematicalCategoryTheory.Functor.Faithful
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
CategoryTheory.Functor.mapGrp
CategoryTheory.Functor.map_injective
CategoryTheory.Grp.instFaithfulMonForget₂Mon
mapMon
CategoryTheory.Functor.congr_map

CategoryTheory.Functor.Full

Theorems

NameKindAssumesProvesValidatesDepends On
mapGrp 📖mathematicalCategoryTheory.Functor.Full
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
CategoryTheory.Functor.mapGrp
CategoryTheory.Functor.FullyFaithful.full

CategoryTheory.Functor.FullyFaithful

Definitions

NameCategoryTheorems
grpObj 📖CompOp
3 mathmath: grpObj_inv, grpObj_mul, grpObj_one
grp_Class 📖CompOp
mapGrp 📖CompOp
1 mathmath: mapGrp_preimage

Theorems

NameKindAssumesProvesValidatesDepends On
grpObj_inv 📖mathematicalCategoryTheory.GrpObj.inv
grpObj
preimage
CategoryTheory.Functor.obj
grpObj_mul 📖mathematicalCategoryTheory.MonObj.mul
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.GrpObj.toMonObj
grpObj
preimage
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.OplaxMonoidal.δ
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
grpObj_one 📖mathematicalCategoryTheory.MonObj.one
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.GrpObj.toMonObj
grpObj
preimage
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.OplaxMonoidal.η
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
mapGrp_preimage 📖mathematicalpreimage
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
CategoryTheory.Functor.mapGrp
mapGrp
CategoryTheory.Grp.homMk'
CategoryTheory.Mon
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Mon.instCategory
CategoryTheory.Functor.mapMon
CategoryTheory.Functor.Monoidal.toLaxMonoidal
mapMon
CategoryTheory.Grp.toMon
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Functor.obj

CategoryTheory.Functor.mapGrp

Definitions

NameCategoryTheorems
instBraided 📖CompOp
instMonoidal 📖CompOp

CategoryTheory.Functor.obj

Theorems

NameKindAssumesProvesValidatesDepends On
ι_def 📖mathematicalCategoryTheory.GrpObj.inv
CategoryTheory.Functor.obj
CategoryTheory.Functor.grpObjObj
CategoryTheory.Functor.map
ι_def_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.GrpObj.inv
CategoryTheory.Functor.grpObjObj
CategoryTheory.Functor.map
Mathlib.Tactic.Reassoc.eq_whisker'
ι_def

CategoryTheory.Grp

Definitions

NameCategoryTheorems
X 📖CompOp
68 mathmath: CategoryTheory.Functor.mapCommGrp_obj_grp_one, CategoryTheory.yonedaGrp_obj, CategoryTheory.Functor.comp_mapGrp_mul, whiskerLeft_hom_hom, CategoryTheory.Functor.mapGrp_id_mul, CategoryTheory.Functor.mapGrpIdIso_hom_app_hom_hom, leftUnitor_hom_hom, rightUnitor_hom_hom_hom, hom_mul, CategoryTheory.Functor.mapGrp_obj_grp_one, CategoryTheory.Functor.mapGrp_id_one, associator_inv_hom_hom, leftUnitor_hom_hom_hom, CategoryTheory.CommGrp.forget₂Grp_obj_mul, rightUnitor_inv_hom_hom, CategoryTheory.Functor.essImage_mapGrp, whiskerRight_hom_hom, snd_hom, tensorUnit_mul, CategoryTheory.CommGrp.forget₂Grp_obj_X, tensorUnit_X, whiskerLeft_hom, CategoryTheory.Functor.mapGrpNatIso_hom_app_hom_hom, CategoryTheory.Functor.mapGrpFunctor_map_app, leftUnitor_inv_hom_hom, rightUnitor_inv_hom, forget₂Mon_obj_mul, associator_hom_hom_hom, toMon_X, braiding_inv_hom, id_hom, CategoryTheory.Functor.mapGrpCompIso_hom_app_hom_hom, fst_hom, tensorUnit_one, CategoryTheory.CommGrp.forget₂Grp_obj_one, CategoryTheory.Functor.mapGrp_map_hom_hom, braiding_inv_hom_hom, tensorObj_X, tensorObj_mul, rightUnitor_hom_hom, forget₂Mon_obj_X, tensorObj_one, CategoryTheory.Functor.mapGrpIdIso_inv_app_hom_hom, leftUnitor_inv_hom, CategoryTheory.Functor.mapGrp_obj_grp_mul, snd_hom_hom, CategoryTheory.Functor.mapGrpNatTrans_app_hom_hom, hom_one, forget₂Mon_obj_one, associator_inv_hom, CategoryTheory.CommGrp.toGrp_X, CategoryTheory.Functor.mapGrpNatIso_inv_app_hom_hom, CategoryTheory.Functor.mapGrpCompIso_inv_app_hom_hom, braiding_hom_hom, CategoryTheory.Functor.mapGrp_obj_grp_inv, associator_hom_hom, forget_obj, CategoryTheory.yonedaGrp_map_app, whiskerRight_hom, CategoryTheory.Functor.mapCommGrp_obj_grp_mul, tensorHom_hom, fst_hom_hom, trivial_X, braiding_hom_hom_hom, CategoryTheory.Functor.mapGrp_obj_X, id_hom_hom, CategoryTheory.Functor.mapCommGrp_obj_grp_inv, CategoryTheory.Functor.comp_mapGrp_one
forget 📖CompOp
5 mathmath: forget_map, CategoryTheory.CommGrp.forget₂Grp_comp_forget, forget₂Mon_comp_forget, forget_obj, instFaithfulForget
forget₂Mon 📖CompOp
35 mathmath: mkIso_inv_hom, mkIso_hom_hom, CategoryTheory.Functor.mapCommGrpCompIso_inv_app_hom_hom_hom, CategoryTheory.Functor.mapGrpIdIso_hom_app_hom_hom, ε_def, CategoryTheory.Functor.mapCommGrpCompIso_hom_app_hom_hom_hom, mkIso_hom_hom_hom, forget₂Mon_map_hom, CategoryTheory.Preadditive.commGrpEquivalenceAux_hom_app_hom_hom_hom, μ_def, CategoryTheory.Functor.mapGrpNatIso_hom_app_hom_hom, CategoryTheory.Functor.mapCommGrpNatIso_inv_app_hom_hom_hom, forget₂Mon_obj_mul, δ_def, mkIso'_hom_hom_hom, CategoryTheory.Functor.mapGrpCompIso_hom_app_hom_hom, CategoryTheory.CommGrp.mkIso'_inv_hom_hom_hom, CategoryTheory.Preadditive.commGrpEquivalenceAux_inv_app_hom_hom_hom, CategoryTheory.Functor.mapCommGrpIdIso_hom_app_hom_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_inv_app_hom_hom_hom, forget₂Mon_obj_X, forget₂Mon_comp_forget, CategoryTheory.Functor.mapGrpIdIso_inv_app_hom_hom, mkIso_inv_hom_hom, forget₂Mon_obj_one, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_hom_app_hom_hom_hom, CategoryTheory.Functor.mapCommGrpIdIso_inv_app_hom_hom_hom, CategoryTheory.Functor.mapGrpNatIso_inv_app_hom_hom, CategoryTheory.Functor.mapGrpCompIso_inv_app_hom_hom, CategoryTheory.Functor.mapCommGrpNatIso_hom_app_hom_hom_hom, instFaithfulMonForget₂Mon, η_def, CategoryTheory.CommGrp.mkIso'_hom_hom_hom_hom, mkIso'_inv_hom_hom, instFullMonForget₂Mon
forget₂Mon_ 📖CompOp
fullyFaithfulForget₂Mon 📖CompOp
fullyFaithfulForget₂Mon_ 📖CompOp
grp 📖CompOp
36 mathmath: Hom.hom_div, Hom.hom_hom_zpow, CategoryTheory.yonedaGrp_obj, trivial_grp_inv, CategoryTheory.Functor.comp_mapGrp_mul, CategoryTheory.Functor.mapGrp_id_mul, CategoryTheory.Functor.mapGrpIdIso_hom_app_hom_hom, hom_mul, Hom.hom_zpow, CategoryTheory.Functor.mapGrp_obj_grp_one, CategoryTheory.Functor.mapGrp_id_one, Hom.hom_hom_div, CategoryTheory.CommGrp.forget₂Grp_obj_mul, Hom.hom_hom_inv, tensorUnit_mul, CategoryTheory.Functor.mapGrpNatIso_hom_app_hom_hom, forget₂Mon_obj_mul, CategoryTheory.Functor.mapGrpCompIso_hom_app_hom_hom, tensorUnit_one, CategoryTheory.CommGrp.forget₂Grp_obj_one, CategoryTheory.Functor.mapGrp_map_hom_hom, tensorObj_mul, tensorObj_one, CategoryTheory.Functor.mapGrpIdIso_inv_app_hom_hom, CategoryTheory.Functor.mapGrp_obj_grp_mul, trivial_grp_one, hom_one, forget₂Mon_obj_one, CategoryTheory.Functor.mapGrpNatIso_inv_app_hom_hom, CategoryTheory.Functor.mapGrpCompIso_inv_app_hom_hom, Hom.hom_inv, CategoryTheory.Functor.mapGrp_obj_grp_inv, CategoryTheory.yonedaGrp_map_app, tensorHom_hom, trivial_grp_mul, CategoryTheory.Functor.comp_mapGrp_one
homMk 📖CompOp
1 mathmath: homMk_hom_hom
homMk' 📖CompOp
3 mathmath: homMk'_hom, CategoryTheory.Functor.FullyFaithful.mapGrp_preimage, CategoryTheory.Functor.FullyFaithful.mapCommGrp_preimage
homMk'' 📖CompOp
3 mathmath: CategoryTheory.Preadditive.toCommGrp_map, CategoryTheory.Functor.mapGrpFunctor_map_app, homMk''_hom_hom
instBraidedCategory 📖CompOp
7 mathmath: CategoryTheory.yonedaCommGrpGrpObj_map, braiding_inv_hom, braiding_inv_hom_hom, instIsCommMonObj, CategoryTheory.yonedaCommGrpGrp_map_app, braiding_hom_hom, braiding_hom_hom_hom
instCartesianMonoidalCategory 📖CompOp
16 mathmath: Hom.hom_div, Hom.hom_hom_zpow, CategoryTheory.yonedaCommGrpGrpObj_map, lift_hom, Hom.hom_zpow, Hom.hom_hom_div, Hom.hom_hom_inv, snd_hom, Hom.hom_pow, fst_hom, Hom.hom_mul, snd_hom_hom, CategoryTheory.yonedaCommGrpGrp_map_app, Hom.hom_inv, Hom.hom_one, fst_hom_hom
instCategory 📖CompOp
150 mathmath: mkIso_inv_hom, Hom.hom_div, comp', mkIso_hom_hom, CategoryTheory.Equivalence.mapGrp_counitIso, Hom.hom_hom_zpow, CategoryTheory.Functor.mapCommGrpCompIso_inv_app_hom_hom_hom, CategoryTheory.Functor.mapCommGrp_obj_grp_one, id', CategoryTheory.Functor.FullyFaithful.mapGrp_preimage, CategoryTheory.yonedaGrp_obj, CategoryTheory.yonedaCommGrpGrpObj_map, CategoryTheory.Preadditive.toCommGrp_map, CategoryTheory.CommGrp.mkIso_inv_hom, CategoryTheory.Functor.comp_mapGrp_mul, whiskerLeft_hom_hom, CategoryTheory.Functor.mapGrp_id_mul, CategoryTheory.Functor.mapGrpIdIso_hom_app_hom_hom, CategoryTheory.instFaithfulGrpFunctorOppositeGrpCatYonedaGrp, leftUnitor_hom_hom, CategoryTheory.CommGrp.id', CategoryTheory.CommGrp.comp', ε_def, rightUnitor_hom_hom_hom, lift_hom, CategoryTheory.CommGrp.comp_hom, hom_mul, instHasInitial, CategoryTheory.CommGrp.instFaithfulGrpForget₂Grp, CategoryTheory.Functor.mapGrpFunctor_obj, Hom.hom_zpow, CategoryTheory.Functor.mapGrp_obj_grp_one, CategoryTheory.Functor.mapCommGrpCompIso_hom_app_hom_hom_hom, CategoryTheory.Functor.mapGrp_id_one, associator_inv_hom_hom, Hom.hom_hom_div, leftUnitor_hom_hom_hom, CategoryTheory.CommGrp.instIsIsoMonHomGrp, forget_map, mkIso_hom_hom_hom, CategoryTheory.CommGrp.forget₂CommMon_map_hom, CategoryTheory.CommGrp.forget₂Grp_obj_mul, CategoryTheory.Adjunction.mapGrp_unit, instIsMonHom, rightUnitor_inv_hom_hom, CategoryTheory.Functor.essImage_mapGrp, forget₂Mon_map_hom, whiskerRight_hom_hom, Hom.hom_hom_inv, CategoryTheory.Preadditive.commGrpEquivalenceAux_hom_app_hom_hom_hom, CategoryTheory.essImage_yonedaGrp, μ_def, snd_hom, tensorUnit_mul, CategoryTheory.CommGrp.forget₂Grp_obj_X, tensorUnit_X, whiskerLeft_hom, CategoryTheory.Functor.mapGrpNatIso_hom_app_hom_hom, CategoryTheory.Functor.mapGrpFunctor_map_app, CategoryTheory.Equivalence.mapGrp_inverse, leftUnitor_inv_hom_hom, CategoryTheory.Functor.mapCommGrpNatIso_inv_app_hom_hom_hom, rightUnitor_inv_hom, CategoryTheory.CommGrp.hom_ext_iff, forget₂Mon_obj_mul, Hom.hom_pow, δ_def, associator_hom_hom_hom, braiding_inv_hom, mkIso'_hom_hom_hom, id_hom, CategoryTheory.Functor.mapGrpCompIso_hom_app_hom_hom, fst_hom, CategoryTheory.CommGrp.mkIso_inv_hom_hom_hom, CategoryTheory.CommGrp.mkIso'_inv_hom_hom_hom, CategoryTheory.Equivalence.mapGrp_unitIso, tensorUnit_one, CategoryTheory.yonedaCommGrpGrp_obj, CategoryTheory.CommGrp.forget₂Grp_obj_one, CategoryTheory.CommGrp.forget₂Grp_comp_forget, CategoryTheory.Preadditive.commGrpEquivalenceAux_inv_app_hom_hom_hom, CategoryTheory.Functor.mapGrp_map_hom_hom, CategoryTheory.CommGrp.forget₂Grp_map_hom, comp_hom_hom, braiding_inv_hom_hom, CategoryTheory.Functor.mapCommGrpIdIso_hom_app_hom_hom_hom, CategoryTheory.CommGrp.mkIso_hom_hom, CategoryTheory.instFullGrpFunctorOppositeGrpCatYonedaGrp, tensorObj_X, Hom.hom_mul, CategoryTheory.yonedaCommGrpGrpObj_obj_coe, tensorObj_mul, rightUnitor_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_inv_app_hom_hom_hom, forget₂Mon_obj_X, instIsCommMonObj, forget₂Mon_comp_forget, CategoryTheory.Functor.Full.mapGrp, CategoryTheory.Functor.FullyFaithful.mapCommGrp_preimage, CategoryTheory.CommGrp.instIsIsoGrpHom, tensorObj_one, CategoryTheory.Functor.mapGrpIdIso_inv_app_hom_hom, CategoryTheory.CommGrp.mkIso_hom_hom_hom_hom, leftUnitor_inv_hom, CategoryTheory.CommGrp.id_hom, CategoryTheory.Functor.mapGrp_obj_grp_mul, mkIso_inv_hom_hom, snd_hom_hom, CategoryTheory.Functor.mapGrpNatTrans_app_hom_hom, hom_one, forget₂Mon_obj_one, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_hom_app_hom_hom_hom, CategoryTheory.Functor.mapCommGrpIdIso_inv_app_hom_hom_hom, CategoryTheory.yonedaCommGrpGrp_map_app, associator_inv_hom, CategoryTheory.Functor.mapGrpNatIso_inv_app_hom_hom, CategoryTheory.Functor.mapGrpCompIso_inv_app_hom_hom, Hom.hom_inv, CategoryTheory.Functor.mapCommGrpNatIso_hom_app_hom_hom_hom, instFaithfulMonForget₂Mon, braiding_hom_hom, CategoryTheory.Functor.mapCommGrp_map_hom_hom_hom, CategoryTheory.Functor.mapGrp_obj_grp_inv, η_def, associator_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_inverse_map, CategoryTheory.Functor.mapCommGrpNatTrans_app_hom_hom_hom, CategoryTheory.Functor.Faithful.mapGrp, forget_obj, CategoryTheory.yonedaGrp_map_app, CategoryTheory.CommGrp.mkIso'_hom_hom_hom_hom, whiskerRight_hom, CategoryTheory.Functor.mapCommGrp_obj_grp_mul, tensorHom_hom, Hom.hom_one, CategoryTheory.Equivalence.mapGrp_functor, fst_hom_hom, mkIso'_inv_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_functor_map_hom_hom_hom, braiding_hom_hom_hom, instFaithfulForget, comp_hom, instFullMonForget₂Mon, CategoryTheory.Functor.mapGrp_obj_X, id_hom_hom, CategoryTheory.Functor.mapCommGrp_obj_grp_inv, CategoryTheory.Adjunction.mapGrp_counit, CategoryTheory.Functor.comp_mapGrp_one, CategoryTheory.CommGrp.forget_map, CategoryTheory.CommGrp.instFullGrpForget₂Grp
instInhabited 📖CompOp
instMonoidalCategory 📖CompOp
12 mathmath: ε_def, hom_mul, instIsMonHom, μ_def, δ_def, braiding_inv_hom, braiding_inv_hom_hom, instIsCommMonObj, hom_one, braiding_hom_hom, η_def, braiding_hom_hom_hom
instMonoidalCategoryStruct 📖CompOp
23 mathmath: whiskerLeft_hom_hom, leftUnitor_hom_hom, rightUnitor_hom_hom_hom, associator_inv_hom_hom, leftUnitor_hom_hom_hom, rightUnitor_inv_hom_hom, whiskerRight_hom_hom, tensorUnit_mul, tensorUnit_X, whiskerLeft_hom, leftUnitor_inv_hom_hom, rightUnitor_inv_hom, associator_hom_hom_hom, tensorUnit_one, tensorObj_X, tensorObj_mul, rightUnitor_hom_hom, tensorObj_one, leftUnitor_inv_hom, associator_inv_hom, associator_hom_hom, whiskerRight_hom, tensorHom_hom
instMonoidalMonForget₂Mon 📖CompOp
4 mathmath: ε_def, μ_def, δ_def, η_def
mkIso 📖CompOp
4 mathmath: mkIso_inv_hom, mkIso_hom_hom, mkIso_hom_hom_hom, mkIso_inv_hom_hom
mkIso' 📖CompOp
2 mathmath: mkIso'_hom_hom_hom, mkIso'_inv_hom_hom
toMon 📖CompOp
93 mathmath: mkIso_inv_hom, Hom.hom_div, comp', mkIso_hom_hom, instIsIsoHomHomMon, homMk'_hom, Hom.hom_hom_zpow, CategoryTheory.Functor.mapCommGrpCompIso_inv_app_hom_hom_hom, id', CategoryTheory.Functor.FullyFaithful.mapGrp_preimage, CategoryTheory.CommGrp.mkIso_inv_hom, whiskerLeft_hom_hom, CategoryTheory.Functor.mapGrpIdIso_hom_app_hom_hom, leftUnitor_hom_hom, rightUnitor_hom_hom_hom, lift_hom, hom_mul, Hom.hom_zpow, CategoryTheory.Functor.mapCommGrpCompIso_hom_app_hom_hom_hom, associator_inv_hom_hom, Hom.hom_hom_div, leftUnitor_hom_hom_hom, CategoryTheory.CommGrp.instIsIsoMonHomGrp, forget_map, mkIso_hom_hom_hom, CategoryTheory.CommGrp.forget₂CommMon_map_hom, rightUnitor_inv_hom_hom, forget₂Mon_map_hom, whiskerRight_hom_hom, Hom.hom_hom_inv, CategoryTheory.Preadditive.commGrpEquivalenceAux_hom_app_hom_hom_hom, snd_hom, whiskerLeft_hom, CategoryTheory.Functor.mapGrpNatIso_hom_app_hom_hom, leftUnitor_inv_hom_hom, CategoryTheory.Functor.mapCommGrpNatIso_inv_app_hom_hom_hom, rightUnitor_inv_hom, CategoryTheory.CommGrp.hom_ext_iff, Hom.hom_pow, associator_hom_hom_hom, toMon_X, braiding_inv_hom, mkIso'_hom_hom_hom, id_hom, CategoryTheory.Functor.mapGrpCompIso_hom_app_hom_hom, fst_hom, CategoryTheory.CommGrp.mkIso_inv_hom_hom_hom, CategoryTheory.CommGrp.mkIso'_inv_hom_hom_hom, CategoryTheory.Preadditive.commGrpEquivalenceAux_inv_app_hom_hom_hom, CategoryTheory.Functor.mapGrp_map_hom_hom, CategoryTheory.CommGrp.forget₂Grp_map_hom, comp_hom_hom, braiding_inv_hom_hom, CategoryTheory.Functor.mapCommGrpIdIso_hom_app_hom_hom_hom, CategoryTheory.CommGrp.mkIso_hom_hom, Hom.hom_mul, rightUnitor_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_inv_app_hom_hom_hom, hom_ext_iff, homMk''_hom_hom, CategoryTheory.Functor.FullyFaithful.mapCommGrp_preimage, CategoryTheory.Functor.mapGrpIdIso_inv_app_hom_hom, CategoryTheory.CommGrp.mkIso_hom_hom_hom_hom, leftUnitor_inv_hom, mkIso_inv_hom_hom, snd_hom_hom, CategoryTheory.Functor.mapGrpNatTrans_app_hom_hom, hom_one, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_hom_app_hom_hom_hom, CategoryTheory.Functor.mapCommGrpIdIso_inv_app_hom_hom_hom, associator_inv_hom, homMk_hom_hom, CategoryTheory.Functor.mapGrpNatIso_inv_app_hom_hom, CategoryTheory.Functor.mapGrpCompIso_inv_app_hom_hom, Hom.hom_inv, CategoryTheory.Functor.mapCommGrpNatIso_hom_app_hom_hom_hom, braiding_hom_hom, CategoryTheory.Functor.mapCommGrp_map_hom_hom_hom, associator_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_inverse_map, CategoryTheory.Functor.mapCommGrpNatTrans_app_hom_hom_hom, CategoryTheory.yonedaGrp_map_app, CategoryTheory.CommGrp.mkIso'_hom_hom_hom_hom, whiskerRight_hom, tensorHom_hom, Hom.hom_one, fst_hom_hom, mkIso'_inv_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_functor_map_hom_hom_hom, braiding_hom_hom_hom, comp_hom, id_hom_hom, CategoryTheory.CommGrp.forget_map
toMon_ 📖CompOp
trivial 📖CompOp
4 mathmath: trivial_grp_inv, trivial_grp_one, trivial_grp_mul, trivial_X
uniqueHomFromTrivial 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
associator_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMon
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Grp
instCategory
instMonoidalCategoryStruct
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
X
associator_hom_hom_hom
associator_hom_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMon
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Grp
instCategory
instMonoidalCategoryStruct
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
X
associator_inv_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMon
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Grp
instCategory
instMonoidalCategoryStruct
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
X
associator_inv_hom_hom
associator_inv_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMon
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Grp
instCategory
instMonoidalCategoryStruct
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
X
braiding_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMon
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Grp
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Iso.hom
CategoryTheory.BraidedCategory.braiding
instBraidedCategory
X
braiding_hom_hom_hom
braiding_hom_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMon
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Grp
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Iso.hom
CategoryTheory.BraidedCategory.braiding
instBraidedCategory
X
braiding_inv_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMon
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Grp
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Iso.inv
CategoryTheory.BraidedCategory.braiding
instBraidedCategory
X
braiding_inv_hom_hom
braiding_inv_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMon
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Grp
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Iso.inv
CategoryTheory.BraidedCategory.braiding
instBraidedCategory
X
comp' 📖mathematicalCategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp
CategoryTheory.Mon
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Mon.instCategory
toMon
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
instCategory
comp_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMon
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Mon.X
comp_hom_hom
comp_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMon
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Mon.X
forget_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Grp
instCategory
forget
CategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMon
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
forget_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Grp
instCategory
forget
X
forget₂Mon_comp_forget 📖mathematicalCategoryTheory.Functor.comp
CategoryTheory.Grp
instCategory
CategoryTheory.Mon
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Mon.instCategory
forget₂Mon
CategoryTheory.Mon.forget
forget
forget₂Mon_map_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Functor.obj
CategoryTheory.Grp
instCategory
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
forget₂Mon
CategoryTheory.Functor.map
toMon
CategoryTheory.InducedCategory.Hom.hom
forget₂Mon_obj_X 📖mathematicalCategoryTheory.Mon.X
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Functor.obj
CategoryTheory.Grp
instCategory
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
forget₂Mon
X
forget₂Mon_obj_mul 📖mathematicalCategoryTheory.MonObj.mul
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Mon.X
CategoryTheory.Functor.obj
CategoryTheory.Grp
instCategory
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
forget₂Mon
CategoryTheory.Mon.mon
X
CategoryTheory.GrpObj.toMonObj
grp
forget₂Mon_obj_one 📖mathematicalCategoryTheory.MonObj.one
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Mon.X
CategoryTheory.Functor.obj
CategoryTheory.Grp
instCategory
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
forget₂Mon
CategoryTheory.Mon.mon
X
CategoryTheory.GrpObj.toMonObj
grp
fst_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMon
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Grp
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instCartesianMonoidalCategory
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.SemiCartesianMonoidalCategory.fst
X
fst_hom_hom
fst_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMon
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Grp
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instCartesianMonoidalCategory
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.SemiCartesianMonoidalCategory.fst
X
homMk''_hom_hom 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.MonObj.one
CategoryTheory.GrpObj.toMonObj
grp
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonObj.mul
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Mon.Hom.hom
toMon
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
homMk''
homMk'_hom 📖mathematicalCategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp
CategoryTheory.Mon
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Mon.instCategory
toMon
homMk'
homMk_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMon
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
homMk
hom_ext 📖CategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMon
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.InducedCategory.hom_ext
CategoryTheory.Mon.Hom.ext
hom_ext_iff 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMon
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
hom_ext
id' 📖mathematicalCategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp
CategoryTheory.Mon
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Mon.instCategory
toMon
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
instCategory
id_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMon
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
instCategory
X
id_hom_hom
id_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMon
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
instCategory
X
instFaithfulForget 📖mathematicalCategoryTheory.Functor.Faithful
CategoryTheory.Grp
instCategory
forget
hom_ext
instFaithfulMonForget₂Mon 📖mathematicalCategoryTheory.Functor.Faithful
CategoryTheory.Grp
instCategory
CategoryTheory.Mon
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Mon.instCategory
forget₂Mon
CategoryTheory.InducedCategory.faithful
instFullMonForget₂Mon 📖mathematicalCategoryTheory.Functor.Full
CategoryTheory.Grp
instCategory
CategoryTheory.Mon
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Mon.instCategory
forget₂Mon
CategoryTheory.InducedCategory.full
instHasInitial 📖mathematicalCategoryTheory.Limits.HasInitial
CategoryTheory.Grp
instCategory
CategoryTheory.Limits.hasInitial_of_unique
Unique.instSubsingleton
instIsIsoHomHomMon 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Mon.X
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMon
CategoryTheory.Mon.Hom.hom
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Functor.map_isIso
leftUnitor_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMon
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Grp
instCategory
instMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
X
leftUnitor_hom_hom_hom
leftUnitor_hom_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMon
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Grp
instCategory
instMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
X
leftUnitor_inv_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMon
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Grp
instCategory
instMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
X
leftUnitor_inv_hom_hom
leftUnitor_inv_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMon
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Grp
instCategory
instMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
X
lift_hom 📖mathematicalCategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp
CategoryTheory.Mon
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Mon.instCategory
toMon
CategoryTheory.MonoidalCategoryStruct.tensorObj
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instCartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.lift
CategoryTheory.Mon.instCartesianMonoidalCategory
mkIso'_hom_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Functor.obj
CategoryTheory.Grp
instCategory
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
forget₂Mon
CategoryTheory.InducedCategory.Hom.hom
toMon
CategoryTheory.Iso.hom
mkIso'
mkIso'_inv_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Functor.obj
CategoryTheory.Grp
instCategory
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
forget₂Mon
CategoryTheory.InducedCategory.Hom.hom
toMon
CategoryTheory.Iso.inv
mkIso'
mkIso_hom_hom 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.MonObj.one
CategoryTheory.GrpObj.toMonObj
grp
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonObj.mul
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Mon.Hom.hom
CategoryTheory.Functor.obj
CategoryTheory.Grp
instCategory
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
forget₂Mon
CategoryTheory.InducedCategory.Hom.hom
toMon
mkIso
mkIso_hom_hom_hom
mkIso_hom_hom_hom 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.MonObj.one
CategoryTheory.GrpObj.toMonObj
grp
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonObj.mul
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Mon.Hom.hom
CategoryTheory.Functor.obj
CategoryTheory.Grp
instCategory
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
forget₂Mon
CategoryTheory.InducedCategory.Hom.hom
toMon
mkIso
mkIso_inv_hom 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.MonObj.one
CategoryTheory.GrpObj.toMonObj
grp
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonObj.mul
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Mon.Hom.hom
CategoryTheory.Functor.obj
CategoryTheory.Grp
instCategory
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
forget₂Mon
CategoryTheory.InducedCategory.Hom.hom
toMon
CategoryTheory.Iso.inv
mkIso
mkIso_inv_hom_hom
mkIso_inv_hom_hom 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.MonObj.one
CategoryTheory.GrpObj.toMonObj
grp
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonObj.mul
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Mon.Hom.hom
CategoryTheory.Functor.obj
CategoryTheory.Grp
instCategory
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
forget₂Mon
CategoryTheory.InducedCategory.Hom.hom
toMon
CategoryTheory.Iso.inv
mkIso
rightUnitor_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMon
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Grp
instCategory
instMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
X
rightUnitor_hom_hom_hom
rightUnitor_hom_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMon
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Grp
instCategory
instMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
X
rightUnitor_inv_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMon
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Grp
instCategory
instMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
X
rightUnitor_inv_hom_hom
rightUnitor_inv_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMon
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Grp
instCategory
instMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
X
snd_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMon
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Grp
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instCartesianMonoidalCategory
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.SemiCartesianMonoidalCategory.snd
X
snd_hom_hom
snd_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMon
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Grp
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instCartesianMonoidalCategory
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.SemiCartesianMonoidalCategory.snd
X
tensorHom_hom 📖mathematicalCategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp
CategoryTheory.Mon
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Mon.instCategory
toMon
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
X
CategoryTheory.GrpObj.tensorObj.instTensorObj
grp
CategoryTheory.MonoidalCategoryStruct.tensorHom
instCategory
instMonoidalCategoryStruct
CategoryTheory.Mon.monMonoidalStruct
tensorObj_X 📖mathematicalX
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Grp
instCategory
instMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
tensorObj_mul 📖mathematicalCategoryTheory.MonObj.mul
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
X
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Grp
instCategory
instMonoidalCategoryStruct
CategoryTheory.GrpObj.toMonObj
grp
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Mon.instMonObjTensorObj
tensorObj_one 📖mathematicalCategoryTheory.MonObj.one
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
X
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Grp
instCategory
instMonoidalCategoryStruct
CategoryTheory.GrpObj.toMonObj
grp
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Mon.instMonObjTensorObj
tensorUnit_X 📖mathematicalX
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Grp
instCategory
instMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
tensorUnit_mul 📖mathematicalCategoryTheory.MonObj.mul
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
X
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Grp
instCategory
instMonoidalCategoryStruct
CategoryTheory.GrpObj.toMonObj
grp
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonObj.instTensorUnit
tensorUnit_one 📖mathematicalCategoryTheory.MonObj.one
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
X
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Grp
instCategory
instMonoidalCategoryStruct
CategoryTheory.GrpObj.toMonObj
grp
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonObj.instTensorUnit
toMon_X 📖mathematicalCategoryTheory.Mon.X
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMon
X
trivial_X 📖mathematicalX
trivial
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
trivial_grp_inv 📖mathematicalCategoryTheory.GrpObj.inv
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
grp
trivial
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
trivial_grp_mul 📖mathematicalCategoryTheory.MonObj.mul
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.GrpObj.toMonObj
grp
trivial
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategoryStruct.leftUnitor
trivial_grp_one 📖mathematicalCategoryTheory.MonObj.one
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.GrpObj.toMonObj
grp
trivial
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
whiskerLeft_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMon
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Grp
instCategory
instMonoidalCategoryStruct
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Mon.X
X
whiskerLeft_hom_hom
whiskerLeft_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMon
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Grp
instCategory
instMonoidalCategoryStruct
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Mon.X
X
whiskerRight_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMon
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Grp
instCategory
instMonoidalCategoryStruct
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
X
CategoryTheory.Mon.X
whiskerRight_hom_hom
whiskerRight_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMon
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Grp
instCategory
instMonoidalCategoryStruct
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
X
CategoryTheory.Mon.X
δ_def 📖mathematicalCategoryTheory.Functor.OplaxMonoidal.δ
CategoryTheory.Grp
instCategory
instMonoidalCategory
CategoryTheory.Mon
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Mon.instCategory
CategoryTheory.Mon.monMonoidal
forget₂Mon
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
instMonoidalMonForget₂Mon
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
ε_def 📖mathematicalCategoryTheory.Functor.LaxMonoidal.ε
CategoryTheory.Grp
instCategory
instMonoidalCategory
CategoryTheory.Mon
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Mon.instCategory
CategoryTheory.Mon.monMonoidal
forget₂Mon
CategoryTheory.Functor.Monoidal.toLaxMonoidal
instMonoidalMonForget₂Mon
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
η_def 📖mathematicalCategoryTheory.Functor.OplaxMonoidal.η
CategoryTheory.Grp
instCategory
instMonoidalCategory
CategoryTheory.Mon
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Mon.instCategory
CategoryTheory.Mon.monMonoidal
forget₂Mon
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
instMonoidalMonForget₂Mon
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
μ_def 📖mathematicalCategoryTheory.Functor.LaxMonoidal.μ
CategoryTheory.Grp
instCategory
instMonoidalCategory
CategoryTheory.Mon
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Mon.instCategory
CategoryTheory.Mon.monMonoidal
forget₂Mon
CategoryTheory.Functor.Monoidal.toLaxMonoidal
instMonoidalMonForget₂Mon
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj

CategoryTheory.GrpObj

Definitions

NameCategoryTheorems
instTensorUnit 📖CompOp
1 mathmath: inv_def
inv 📖CompOp
48 mathmath: lift_inv_comp_left, inv_hom, lift_inv_right_eq, lift_inv_comp_left_assoc, CategoryTheory.Grp.trivial_grp_inv, left_inv_assoc, lift_inv_comp_right, CategoryTheory.Functor.FullyFaithful.grpObj_inv, one_inv_assoc, lift_comp_inv_right_assoc, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_inv, tensorHom_inv_inv_mul_assoc, one_inv, tensorObj.inv_def, CategoryTheory.instIsMonHomInvOfIsCommMonObj, lift_inv_left_eq, CategoryTheory.Hom.inv_def, CategoryTheory.Functor.obj.ι_def, inv_eq_inv, eq_lift_inv_right, left_inv, CommGrpTypeEquivalenceCommGrp.inverse_obj_inv, mul_inv_rev_assoc, tensorHom_inv_inv_mul, mul_inv, inv_def, mul_inv_rev, CategoryTheory.Preadditive.inv_def, lift_comp_inv_left_assoc, inv_hom_assoc, ofIso_inv, CategoryTheory.Grp_Class.inv_eq_inv, mulRight_inv, mul_inv_assoc, inv_comp_inv_assoc, right_inv, CategoryTheory.Functor.obj.ι_def_assoc, lift_comp_inv_left, eq_lift_inv_left, CategoryTheory.Functor.mapGrp_obj_grp_inv, CategoryTheory.CommGrp.trivial_grp_inv, lift_comp_inv_right, inv_comp_inv, right_inv_assoc, instIsIsoInv, lift_inv_comp_right_assoc, inv_inv, CategoryTheory.Functor.mapCommGrp_obj_grp_inv
mulRight 📖CompOp
3 mathmath: mulRight_one, mulRight_hom, mulRight_inv
ofIso 📖CompOp
3 mathmath: ofIso_inv, ofIso_mul, ofIso_one
toMonObj 📖CompOp
87 mathmath: lift_inv_comp_left, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_one, AlgebraicGeometry.isCommMonObj_of_isProper_of_geometricallyIntegral, CategoryTheory.CommGrp.comm, CategoryTheory.Functor.mapCommGrp_obj_grp_one, lift_inv_right_eq, lift_inv_comp_left_assoc, CommGrpTypeEquivalenceCommGrp.inverse_obj_one, CategoryTheory.Functor.comp_mapGrp_mul, left_inv_assoc, CategoryTheory.Functor.mapGrp_id_mul, CategoryTheory.Over.grpObjMkPullbackSnd_one, CategoryTheory.Over.grpObjMkPullbackSnd_mul, lift_inv_comp_right, CategoryTheory.Grp.hom_mul, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_mul, CategoryTheory.Preadditive.instIsCommMonObj, one_inv_assoc, CategoryTheory.Functor.mapGrp_obj_grp_one, CategoryTheory.Functor.mapGrp_id_one, η_whiskerRight_commutator_assoc, lift_comp_inv_right_assoc, AlgebraicGeometry.instIsClosedImmersionLeftSchemeDiscretePUnitOneOverSpecOf, CategoryTheory.isCommMonObj_iff_commutator_eq_toUnit_η, CategoryTheory.CommGrp.forget₂Grp_obj_mul, tensorHom_inv_inv_mul_assoc, CategoryTheory.Grp.tensorUnit_mul, CategoryTheory.CommGrp.trivial_grp_one, one_inv, mulRight_one, CategoryTheory.Grp.forget₂Mon_obj_mul, whiskerLeft_η_commutator, lift_commutator_eq_mul_mul_inv_inv, CategoryTheory.instIsMonHomInvOfIsCommMonObj, ext_iff, lift_inv_left_eq, CategoryTheory.Functor.comp_mapCommGrp_mul, CategoryTheory.Grp.tensorUnit_one, CategoryTheory.instIsMonHomInvHomOfIsCommMonObj, CategoryTheory.CommGrp.forget₂Grp_obj_one, whiskerLeft_η_commutator_assoc, isPullback, CategoryTheory.yonedaGrpObj_map, CategoryTheory.Functor.mapCommGrp_id_one, toMon_Class_injective, CategoryTheory.CommGrp.forget₂CommMon_obj_mul, eq_lift_inv_right, left_inv, mul_inv_rev_assoc, CategoryTheory.CommGrpObj.toIsCommMonObj, CategoryTheory.Grp.tensorObj_mul, tensorHom_inv_inv_mul, lift_commutator_eq_mul_mul_inv_inv_assoc, mul_inv, CategoryTheory.Grp.tensorObj_one, CategoryTheory.Functor.mapGrp_obj_grp_mul, CategoryTheory.Functor.mapCommpGrp_id_mul, CategoryTheory.CommGrp.forget₂CommMon_obj_one, mul_inv_rev, mulRight_hom, CategoryTheory.Preadditive.mul_def, CategoryTheory.Grp.trivial_grp_one, lift_comp_inv_left_assoc, CategoryTheory.Functor.comp_mapCommGrp_one, CategoryTheory.Grp.hom_one, CategoryTheory.Grp.forget₂Mon_obj_one, CategoryTheory.Functor.FullyFaithful.grpObj_mul, mulRight_inv, mul_inv_assoc, η_whiskerRight_commutator, right_inv, lift_comp_inv_left, eq_lift_inv_left, CommGrpTypeEquivalenceCommGrp.inverse_obj_mul, CategoryTheory.Functor.FullyFaithful.grpObj_one, CategoryTheory.CommGrp.trivial_grp_mul, CategoryTheory.Preadditive.one_def, ofIso_mul, lift_comp_inv_right, CategoryTheory.Functor.mapCommGrp_obj_grp_mul, toMonObj_injective, ofIso_one, CategoryTheory.Grp.trivial_grp_mul, right_inv_assoc, AlgebraicGeometry.isCommMonObj_of_isProper_of_isIntegral_tensorObj_of_isAlgClosed, lift_inv_comp_right_assoc, CategoryTheory.Functor.comp_mapGrp_one

Theorems

NameKindAssumesProvesValidatesDepends On
eq_lift_inv_left 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.lift
inv
CategoryTheory.MonObj.mul
toMonObj
lift_comp_inv_right
CategoryTheory.MonObj.lift_comp_one_left
lift_comp_inv_left
eq_lift_inv_right 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.lift
inv
CategoryTheory.MonObj.mul
toMonObj
CategoryTheory.MonObj.lift_lift_assoc
lift_comp_inv_left
CategoryTheory.MonObj.lift_comp_one_right
lift_comp_inv_right
ext 📖toMonObjtoMonObj_injective
ext_iff 📖mathematicaltoMonObjext
instIsIsoInv 📖mathematicalCategoryTheory.IsIso
inv
inv_comp_inv
inv_comp_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
inv
CategoryTheory.CategoryStruct.id
lift_left_mul_ext
right_inv
CategoryTheory.SemiCartesianMonoidalCategory.comp_toUnit_assoc
left_inv
CategoryTheory.CartesianMonoidalCategory.comp_lift_assoc
CategoryTheory.Category.comp_id
inv_comp_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
inv
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
inv_comp_inv
inv_def 📖mathematicalinv
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instTensorUnit
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
inv_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
inv
CategoryTheory.IsPullback.hom_ext
isPullback
CategoryTheory.CartesianMonoidalCategory.hom_ext
CategoryTheory.CartesianMonoidalCategory.lift_whiskerRight
lift_inv_comp_right
CategoryTheory.CartesianMonoidalCategory.lift_fst
lift_comp_inv_right
CategoryTheory.CartesianMonoidalCategory.lift_snd
CategoryTheory.CartesianMonoidalCategory.lift_lift_associator_hom_assoc
CategoryTheory.CartesianMonoidalCategory.lift_whiskerLeft
lift_inv_comp_left
lift_comp_inv_left
CategoryTheory.eq_whisker
inv_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
inv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inv_hom
inv_inv 📖mathematicalCategoryTheory.inv
inv
instIsIsoInv
instIsIsoInv
CategoryTheory.IsIso.inv_isIso
CategoryTheory.inv_comp_eq_id
CategoryTheory.IsIso.inv_inv
inv_comp_inv
isPullback 📖mathematicalCategoryTheory.IsPullback
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.MonObj.mul
toMonObj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.MonObj.mul_assoc
CategoryTheory.Category.assoc
CategoryTheory.CartesianMonoidalCategory.hom_ext
CategoryTheory.CartesianMonoidalCategory.lift_whiskerRight
CategoryTheory.CartesianMonoidalCategory.lift_fst
CategoryTheory.MonObj.lift_lift_assoc
lift_comp_inv_right
CategoryTheory.MonObj.lift_comp_one_left
CategoryTheory.CartesianMonoidalCategory.lift_snd
CategoryTheory.CartesianMonoidalCategory.lift_lift_associator_hom_assoc
CategoryTheory.CartesianMonoidalCategory.lift_whiskerLeft
eq_lift_inv_right
lift_inv_left_eq
CategoryTheory.CartesianMonoidalCategory.lift_comp_fst_snd
CategoryTheory.Limits.PullbackCone.condition
lift_comp_inv_left
CategoryTheory.MonObj.lift_comp_one_right
CategoryTheory.CartesianMonoidalCategory.whiskerLeft_fst
CategoryTheory.CartesianMonoidalCategory.associator_hom_fst
CategoryTheory.eq_whisker
eq_lift_inv_left
CategoryTheory.CartesianMonoidalCategory.whiskerRight_fst
CategoryTheory.CartesianMonoidalCategory.whiskerRight_snd
left_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.lift
inv
CategoryTheory.CategoryStruct.id
CategoryTheory.MonObj.mul
toMonObj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.SemiCartesianMonoidalCategory.toUnit
CategoryTheory.MonObj.one
left_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.lift
inv
CategoryTheory.CategoryStruct.id
CategoryTheory.MonObj.mul
toMonObj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.SemiCartesianMonoidalCategory.toUnit
CategoryTheory.MonObj.one
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
left_inv
lift_comp_inv_left 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.lift
inv
CategoryTheory.MonObj.mul
toMonObj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.SemiCartesianMonoidalCategory.toUnit
CategoryTheory.MonObj.one
CategoryTheory.whisker_eq
left_inv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.SemiCartesianMonoidalCategory.toUnit_unique
CategoryTheory.Category.comp_id
CategoryTheory.CartesianMonoidalCategory.comp_lift_assoc
lift_comp_inv_left_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.lift
inv
CategoryTheory.MonObj.mul
toMonObj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.SemiCartesianMonoidalCategory.toUnit
CategoryTheory.MonObj.one
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_comp_inv_left
lift_comp_inv_right 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.lift
inv
CategoryTheory.MonObj.mul
toMonObj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.SemiCartesianMonoidalCategory.toUnit
CategoryTheory.MonObj.one
CategoryTheory.whisker_eq
right_inv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.SemiCartesianMonoidalCategory.toUnit_unique
CategoryTheory.Category.comp_id
CategoryTheory.CartesianMonoidalCategory.comp_lift_assoc
lift_comp_inv_right_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.lift
inv
CategoryTheory.MonObj.mul
toMonObj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.SemiCartesianMonoidalCategory.toUnit
CategoryTheory.MonObj.one
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_comp_inv_right
lift_inv_comp_left 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.lift
inv
CategoryTheory.MonObj.mul
toMonObj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.SemiCartesianMonoidalCategory.toUnit
CategoryTheory.MonObj.one
CategoryTheory.eq_whisker
left_inv
CategoryTheory.Category.id_comp
CategoryTheory.CartesianMonoidalCategory.lift_map_assoc
CategoryTheory.IsMonHom.one_hom
CategoryTheory.Category.assoc
CategoryTheory.IsMonHom.mul_hom
lift_inv_comp_left_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.lift
inv
CategoryTheory.MonObj.mul
toMonObj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.SemiCartesianMonoidalCategory.toUnit
CategoryTheory.MonObj.one
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_inv_comp_left
lift_inv_comp_right 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.lift
inv
CategoryTheory.MonObj.mul
toMonObj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.SemiCartesianMonoidalCategory.toUnit
CategoryTheory.MonObj.one
CategoryTheory.eq_whisker
right_inv
CategoryTheory.Category.id_comp
CategoryTheory.CartesianMonoidalCategory.lift_map_assoc
CategoryTheory.IsMonHom.one_hom
CategoryTheory.Category.assoc
CategoryTheory.IsMonHom.mul_hom
lift_inv_comp_right_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.lift
inv
CategoryTheory.MonObj.mul
toMonObj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.SemiCartesianMonoidalCategory.toUnit
CategoryTheory.MonObj.one
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_inv_comp_right
lift_inv_left_eq 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.lift
inv
CategoryTheory.MonObj.mul
toMonObj
eq_lift_inv_left
lift_inv_right_eq 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.lift
inv
CategoryTheory.MonObj.mul
toMonObj
eq_lift_inv_right
lift_left_mul_ext 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.lift
CategoryTheory.MonObj.mul
toMonObj
CategoryTheory.MonObj.lift_comp_one_right
lift_comp_inv_right
CategoryTheory.MonObj.lift_lift_assoc
eq_lift_inv_right
mulRight_hom 📖mathematicalCategoryTheory.Iso.hom
mulRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.lift
CategoryTheory.CategoryStruct.id
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.SemiCartesianMonoidalCategory.toUnit
CategoryTheory.MonObj.mul
toMonObj
mulRight_inv 📖mathematicalCategoryTheory.Iso.inv
mulRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.lift
CategoryTheory.CategoryStruct.id
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.SemiCartesianMonoidalCategory.toUnit
inv
CategoryTheory.MonObj.mul
toMonObj
mulRight_one 📖mathematicalmulRight
CategoryTheory.MonObj.one
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMonObj
CategoryTheory.Iso.refl
CategoryTheory.Iso.ext
CategoryTheory.MonObj.lift_comp_one_right
mul_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.MonObj.mul
toMonObj
inv
CategoryTheory.Iso.hom
CategoryTheory.BraidedCategory.braiding
CategoryTheory.MonoidalCategoryStruct.tensorHom
lift_left_mul_ext
CategoryTheory.Category.comp_id
CategoryTheory.CartesianMonoidalCategory.comp_lift
CategoryTheory.Category.assoc
left_inv
CategoryTheory.CartesianMonoidalCategory.lift_snd_fst
CategoryTheory.CartesianMonoidalCategory.lift_map
CategoryTheory.MonObj.lift_lift_assoc
CategoryTheory.Category.id_comp
CategoryTheory.CartesianMonoidalCategory.lift_fst_snd
lift_comp_inv_left
CategoryTheory.MonObj.lift_comp_one_left
CategoryTheory.SemiCartesianMonoidalCategory.comp_toUnit_assoc
mul_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.MonObj.mul
toMonObj
inv
CategoryTheory.Iso.hom
CategoryTheory.BraidedCategory.braiding
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mul_inv
mul_inv_rev 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.MonObj.mul
toMonObj
inv
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Iso.hom
CategoryTheory.BraidedCategory.braiding
CategoryTheory.BraidedCategory.braiding_naturality_assoc
tensorHom_inv_inv_mul
CategoryTheory.SymmetricCategory.symmetry_assoc
mul_inv_rev_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.MonObj.mul
toMonObj
inv
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Iso.hom
CategoryTheory.BraidedCategory.braiding
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mul_inv_rev
ofIso_inv 📖mathematicalinv
ofIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
ofIso_mul 📖mathematicalCategoryTheory.MonObj.mul
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMonObj
ofIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
ofIso_one 📖mathematicalCategoryTheory.MonObj.one
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMonObj
ofIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Iso.hom
right_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.lift
CategoryTheory.CategoryStruct.id
inv
CategoryTheory.MonObj.mul
toMonObj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.SemiCartesianMonoidalCategory.toUnit
CategoryTheory.MonObj.one
right_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.lift
CategoryTheory.CategoryStruct.id
inv
CategoryTheory.MonObj.mul
toMonObj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.SemiCartesianMonoidalCategory.toUnit
CategoryTheory.MonObj.one
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
right_inv
tensorHom_inv_inv_mul 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorHom
inv
CategoryTheory.MonObj.mul
toMonObj
CategoryTheory.Iso.hom
CategoryTheory.BraidedCategory.braiding
mul_inv
CategoryTheory.SymmetricCategory.symmetry_assoc
tensorHom_inv_inv_mul_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorHom
inv
CategoryTheory.MonObj.mul
toMonObj
CategoryTheory.Iso.hom
CategoryTheory.BraidedCategory.braiding
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
tensorHom_inv_inv_mul
toMonObj_injective 📖mathematicalCategoryTheory.GrpObj
CategoryTheory.MonObj
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMonObj
lift_left_mul_ext
left_inv
right_inv
toMon_Class_injective 📖mathematicalCategoryTheory.GrpObj
CategoryTheory.MonObj
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toMonObj
toMonObj_injective

CategoryTheory.GrpObj.tensorObj

Definitions

NameCategoryTheorems
instTensorObj 📖CompOp
2 mathmath: inv_def, CategoryTheory.Grp.tensorHom_hom

Theorems

NameKindAssumesProvesValidatesDepends On
inv_def 📖mathematicalCategoryTheory.GrpObj.inv
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instTensorObj
CategoryTheory.MonoidalCategoryStruct.tensorHom

CategoryTheory.MonObj

Definitions

NameCategoryTheorems
termι 📖CompOp
«termι[_]» 📖CompOp

---

← Back to Index