| Metric | Count |
DefinitionsmapGrp, mapGrp, grpObj, grp_Class, mapGrp, grpObjObj, mapGrp, instBraided, instMonoidal, mapGrpCompIso, mapGrpFunctor, mapGrpIdIso, mapGrpNatIso, mapGrpNatTrans, X, forget, forget₂Mon, forget₂Mon_, fullyFaithfulForget₂Mon, fullyFaithfulForget₂Mon_, grp, homMk, homMk', homMk'', instBraidedCategory, instCartesianMonoidalCategory, instCategory, instInhabited, instMonoidalCategory, instMonoidalCategoryStruct, instMonoidalMonForget₂Mon, mkIso, mkIso', toMon, toMon_, trivial, uniqueHomFromTrivial, GrpObj, instTensorUnit, inv, mulRight, ofIso, instTensorObj, toMonObj, Grp_Class, termι, «termι[_]» | 47 |
TheoremsmapGrp_counit, mapGrp_unit, mapGrp_counitIso, mapGrp_functor, mapGrp_inverse, mapGrp_unitIso, mapGrp, mapGrp, grpObj_inv, grpObj_mul, grpObj_one, mapGrp_preimage, comp_mapGrp_mul, comp_mapGrp_one, essImage_mapGrp, mapGrpCompIso_hom_app_hom_hom, mapGrpCompIso_inv_app_hom_hom, mapGrpFunctor_map_app, mapGrpFunctor_obj, mapGrpIdIso_hom_app_hom_hom, mapGrpIdIso_inv_app_hom_hom, mapGrpNatIso_hom_app_hom_hom, mapGrpNatIso_inv_app_hom_hom, mapGrpNatTrans_app_hom_hom, mapGrp_id_mul, mapGrp_id_one, mapGrp_map_hom_hom, mapGrp_obj_X, mapGrp_obj_grp_inv, mapGrp_obj_grp_mul, mapGrp_obj_grp_one, ι_def, ι_def_assoc, associator_hom_hom, associator_hom_hom_hom, associator_inv_hom, associator_inv_hom_hom, braiding_hom_hom, braiding_hom_hom_hom, braiding_inv_hom, braiding_inv_hom_hom, comp', comp_hom, comp_hom_hom, forget_map, forget_obj, forget₂Mon_comp_forget, forget₂Mon_map_hom, forget₂Mon_obj_X, forget₂Mon_obj_mul, forget₂Mon_obj_one, fst_hom, fst_hom_hom, homMk''_hom_hom, homMk'_hom, homMk_hom_hom, hom_ext, hom_ext_iff, id', id_hom, id_hom_hom, instFaithfulForget, instFaithfulMonForget₂Mon, instFullMonForget₂Mon, instHasInitial, instIsIsoHomHomMon, leftUnitor_hom_hom, leftUnitor_hom_hom_hom, leftUnitor_inv_hom, leftUnitor_inv_hom_hom, lift_hom, mkIso'_hom_hom_hom, mkIso'_inv_hom_hom, mkIso_hom_hom, mkIso_hom_hom_hom, mkIso_inv_hom, mkIso_inv_hom_hom, rightUnitor_hom_hom, rightUnitor_hom_hom_hom, rightUnitor_inv_hom, rightUnitor_inv_hom_hom, snd_hom, snd_hom_hom, tensorHom_hom, tensorObj_X, tensorObj_mul, tensorObj_one, tensorUnit_X, tensorUnit_mul, tensorUnit_one, toMon_X, trivial_X, trivial_grp_inv, trivial_grp_mul, trivial_grp_one, whiskerLeft_hom, whiskerLeft_hom_hom, whiskerRight_hom, whiskerRight_hom_hom, δ_def, ε_def, η_def, μ_def, eq_lift_inv_left, eq_lift_inv_right, ext, ext_iff, instIsIsoInv, inv_comp_inv, inv_comp_inv_assoc, inv_def, inv_hom, inv_hom_assoc, inv_inv, isPullback, left_inv, left_inv_assoc, lift_comp_inv_left, lift_comp_inv_left_assoc, lift_comp_inv_right, lift_comp_inv_right_assoc, lift_inv_comp_left, lift_inv_comp_left_assoc, lift_inv_comp_right, lift_inv_comp_right_assoc, lift_inv_left_eq, lift_inv_right_eq, lift_left_mul_ext, mulRight_hom, mulRight_inv, mulRight_one, mul_inv, mul_inv_assoc, mul_inv_rev, mul_inv_rev_assoc, ofIso_inv, ofIso_mul, ofIso_one, right_inv, right_inv_assoc, tensorHom_inv_inv_mul, tensorHom_inv_inv_mul_assoc, inv_def, toMonObj_injective, toMon_Class_injective | 145 |
| Total | 192 |
| Name | Category | Theorems |
X 📖 | CompOp | 68 mathmath: CategoryTheory.Functor.mapCommGrp_obj_grp_one, CategoryTheory.yonedaGrp_obj, CategoryTheory.Functor.comp_mapGrp_mul, whiskerLeft_hom_hom, CategoryTheory.Functor.mapGrp_id_mul, CategoryTheory.Functor.mapGrpIdIso_hom_app_hom_hom, leftUnitor_hom_hom, rightUnitor_hom_hom_hom, hom_mul, CategoryTheory.Functor.mapGrp_obj_grp_one, CategoryTheory.Functor.mapGrp_id_one, associator_inv_hom_hom, leftUnitor_hom_hom_hom, CategoryTheory.CommGrp.forget₂Grp_obj_mul, rightUnitor_inv_hom_hom, CategoryTheory.Functor.essImage_mapGrp, whiskerRight_hom_hom, snd_hom, tensorUnit_mul, CategoryTheory.CommGrp.forget₂Grp_obj_X, tensorUnit_X, whiskerLeft_hom, CategoryTheory.Functor.mapGrpNatIso_hom_app_hom_hom, CategoryTheory.Functor.mapGrpFunctor_map_app, leftUnitor_inv_hom_hom, rightUnitor_inv_hom, forget₂Mon_obj_mul, associator_hom_hom_hom, toMon_X, braiding_inv_hom, id_hom, CategoryTheory.Functor.mapGrpCompIso_hom_app_hom_hom, fst_hom, tensorUnit_one, CategoryTheory.CommGrp.forget₂Grp_obj_one, CategoryTheory.Functor.mapGrp_map_hom_hom, braiding_inv_hom_hom, tensorObj_X, tensorObj_mul, rightUnitor_hom_hom, forget₂Mon_obj_X, tensorObj_one, CategoryTheory.Functor.mapGrpIdIso_inv_app_hom_hom, leftUnitor_inv_hom, CategoryTheory.Functor.mapGrp_obj_grp_mul, snd_hom_hom, CategoryTheory.Functor.mapGrpNatTrans_app_hom_hom, hom_one, forget₂Mon_obj_one, associator_inv_hom, CategoryTheory.CommGrp.toGrp_X, CategoryTheory.Functor.mapGrpNatIso_inv_app_hom_hom, CategoryTheory.Functor.mapGrpCompIso_inv_app_hom_hom, braiding_hom_hom, CategoryTheory.Functor.mapGrp_obj_grp_inv, associator_hom_hom, forget_obj, CategoryTheory.yonedaGrp_map_app, whiskerRight_hom, CategoryTheory.Functor.mapCommGrp_obj_grp_mul, tensorHom_hom, fst_hom_hom, trivial_X, braiding_hom_hom_hom, CategoryTheory.Functor.mapGrp_obj_X, id_hom_hom, CategoryTheory.Functor.mapCommGrp_obj_grp_inv, CategoryTheory.Functor.comp_mapGrp_one
|
forget 📖 | CompOp | 5 mathmath: forget_map, CategoryTheory.CommGrp.forget₂Grp_comp_forget, forget₂Mon_comp_forget, forget_obj, instFaithfulForget
|
forget₂Mon 📖 | CompOp | 35 mathmath: mkIso_inv_hom, mkIso_hom_hom, CategoryTheory.Functor.mapCommGrpCompIso_inv_app_hom_hom_hom, CategoryTheory.Functor.mapGrpIdIso_hom_app_hom_hom, ε_def, CategoryTheory.Functor.mapCommGrpCompIso_hom_app_hom_hom_hom, mkIso_hom_hom_hom, forget₂Mon_map_hom, CategoryTheory.Preadditive.commGrpEquivalenceAux_hom_app_hom_hom_hom, μ_def, CategoryTheory.Functor.mapGrpNatIso_hom_app_hom_hom, CategoryTheory.Functor.mapCommGrpNatIso_inv_app_hom_hom_hom, forget₂Mon_obj_mul, δ_def, mkIso'_hom_hom_hom, CategoryTheory.Functor.mapGrpCompIso_hom_app_hom_hom, CategoryTheory.CommGrp.mkIso'_inv_hom_hom_hom, CategoryTheory.Preadditive.commGrpEquivalenceAux_inv_app_hom_hom_hom, CategoryTheory.Functor.mapCommGrpIdIso_hom_app_hom_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_inv_app_hom_hom_hom, forget₂Mon_obj_X, forget₂Mon_comp_forget, CategoryTheory.Functor.mapGrpIdIso_inv_app_hom_hom, mkIso_inv_hom_hom, forget₂Mon_obj_one, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_hom_app_hom_hom_hom, CategoryTheory.Functor.mapCommGrpIdIso_inv_app_hom_hom_hom, CategoryTheory.Functor.mapGrpNatIso_inv_app_hom_hom, CategoryTheory.Functor.mapGrpCompIso_inv_app_hom_hom, CategoryTheory.Functor.mapCommGrpNatIso_hom_app_hom_hom_hom, instFaithfulMonForget₂Mon, η_def, CategoryTheory.CommGrp.mkIso'_hom_hom_hom_hom, mkIso'_inv_hom_hom, instFullMonForget₂Mon
|
forget₂Mon_ 📖 | CompOp | — |
fullyFaithfulForget₂Mon 📖 | CompOp | — |
fullyFaithfulForget₂Mon_ 📖 | CompOp | — |
grp 📖 | CompOp | 36 mathmath: Hom.hom_div, Hom.hom_hom_zpow, CategoryTheory.yonedaGrp_obj, trivial_grp_inv, CategoryTheory.Functor.comp_mapGrp_mul, CategoryTheory.Functor.mapGrp_id_mul, CategoryTheory.Functor.mapGrpIdIso_hom_app_hom_hom, hom_mul, Hom.hom_zpow, CategoryTheory.Functor.mapGrp_obj_grp_one, CategoryTheory.Functor.mapGrp_id_one, Hom.hom_hom_div, CategoryTheory.CommGrp.forget₂Grp_obj_mul, Hom.hom_hom_inv, tensorUnit_mul, CategoryTheory.Functor.mapGrpNatIso_hom_app_hom_hom, forget₂Mon_obj_mul, CategoryTheory.Functor.mapGrpCompIso_hom_app_hom_hom, tensorUnit_one, CategoryTheory.CommGrp.forget₂Grp_obj_one, CategoryTheory.Functor.mapGrp_map_hom_hom, tensorObj_mul, tensorObj_one, CategoryTheory.Functor.mapGrpIdIso_inv_app_hom_hom, CategoryTheory.Functor.mapGrp_obj_grp_mul, trivial_grp_one, hom_one, forget₂Mon_obj_one, CategoryTheory.Functor.mapGrpNatIso_inv_app_hom_hom, CategoryTheory.Functor.mapGrpCompIso_inv_app_hom_hom, Hom.hom_inv, CategoryTheory.Functor.mapGrp_obj_grp_inv, CategoryTheory.yonedaGrp_map_app, tensorHom_hom, trivial_grp_mul, CategoryTheory.Functor.comp_mapGrp_one
|
homMk 📖 | CompOp | 1 mathmath: homMk_hom_hom
|
homMk' 📖 | CompOp | 3 mathmath: homMk'_hom, CategoryTheory.Functor.FullyFaithful.mapGrp_preimage, CategoryTheory.Functor.FullyFaithful.mapCommGrp_preimage
|
homMk'' 📖 | CompOp | 3 mathmath: CategoryTheory.Preadditive.toCommGrp_map, CategoryTheory.Functor.mapGrpFunctor_map_app, homMk''_hom_hom
|
instBraidedCategory 📖 | CompOp | 7 mathmath: CategoryTheory.yonedaCommGrpGrpObj_map, braiding_inv_hom, braiding_inv_hom_hom, instIsCommMonObj, CategoryTheory.yonedaCommGrpGrp_map_app, braiding_hom_hom, braiding_hom_hom_hom
|
instCartesianMonoidalCategory 📖 | CompOp | 16 mathmath: Hom.hom_div, Hom.hom_hom_zpow, CategoryTheory.yonedaCommGrpGrpObj_map, lift_hom, Hom.hom_zpow, Hom.hom_hom_div, Hom.hom_hom_inv, snd_hom, Hom.hom_pow, fst_hom, Hom.hom_mul, snd_hom_hom, CategoryTheory.yonedaCommGrpGrp_map_app, Hom.hom_inv, Hom.hom_one, fst_hom_hom
|
instCategory 📖 | CompOp | 150 mathmath: mkIso_inv_hom, Hom.hom_div, comp', mkIso_hom_hom, CategoryTheory.Equivalence.mapGrp_counitIso, Hom.hom_hom_zpow, CategoryTheory.Functor.mapCommGrpCompIso_inv_app_hom_hom_hom, CategoryTheory.Functor.mapCommGrp_obj_grp_one, id', CategoryTheory.Functor.FullyFaithful.mapGrp_preimage, CategoryTheory.yonedaGrp_obj, CategoryTheory.yonedaCommGrpGrpObj_map, CategoryTheory.Preadditive.toCommGrp_map, CategoryTheory.CommGrp.mkIso_inv_hom, CategoryTheory.Functor.comp_mapGrp_mul, whiskerLeft_hom_hom, CategoryTheory.Functor.mapGrp_id_mul, CategoryTheory.Functor.mapGrpIdIso_hom_app_hom_hom, CategoryTheory.instFaithfulGrpFunctorOppositeGrpCatYonedaGrp, leftUnitor_hom_hom, CategoryTheory.CommGrp.id', CategoryTheory.CommGrp.comp', ε_def, rightUnitor_hom_hom_hom, lift_hom, CategoryTheory.CommGrp.comp_hom, hom_mul, instHasInitial, CategoryTheory.CommGrp.instFaithfulGrpForget₂Grp, CategoryTheory.Functor.mapGrpFunctor_obj, Hom.hom_zpow, CategoryTheory.Functor.mapGrp_obj_grp_one, CategoryTheory.Functor.mapCommGrpCompIso_hom_app_hom_hom_hom, CategoryTheory.Functor.mapGrp_id_one, associator_inv_hom_hom, Hom.hom_hom_div, leftUnitor_hom_hom_hom, CategoryTheory.CommGrp.instIsIsoMonHomGrp, forget_map, mkIso_hom_hom_hom, CategoryTheory.CommGrp.forget₂CommMon_map_hom, CategoryTheory.CommGrp.forget₂Grp_obj_mul, CategoryTheory.Adjunction.mapGrp_unit, instIsMonHom, rightUnitor_inv_hom_hom, CategoryTheory.Functor.essImage_mapGrp, forget₂Mon_map_hom, whiskerRight_hom_hom, Hom.hom_hom_inv, CategoryTheory.Preadditive.commGrpEquivalenceAux_hom_app_hom_hom_hom, CategoryTheory.essImage_yonedaGrp, μ_def, snd_hom, tensorUnit_mul, CategoryTheory.CommGrp.forget₂Grp_obj_X, tensorUnit_X, whiskerLeft_hom, CategoryTheory.Functor.mapGrpNatIso_hom_app_hom_hom, CategoryTheory.Functor.mapGrpFunctor_map_app, CategoryTheory.Equivalence.mapGrp_inverse, leftUnitor_inv_hom_hom, CategoryTheory.Functor.mapCommGrpNatIso_inv_app_hom_hom_hom, rightUnitor_inv_hom, CategoryTheory.CommGrp.hom_ext_iff, forget₂Mon_obj_mul, Hom.hom_pow, δ_def, associator_hom_hom_hom, braiding_inv_hom, mkIso'_hom_hom_hom, id_hom, CategoryTheory.Functor.mapGrpCompIso_hom_app_hom_hom, fst_hom, CategoryTheory.CommGrp.mkIso_inv_hom_hom_hom, CategoryTheory.CommGrp.mkIso'_inv_hom_hom_hom, CategoryTheory.Equivalence.mapGrp_unitIso, tensorUnit_one, CategoryTheory.yonedaCommGrpGrp_obj, CategoryTheory.CommGrp.forget₂Grp_obj_one, CategoryTheory.CommGrp.forget₂Grp_comp_forget, CategoryTheory.Preadditive.commGrpEquivalenceAux_inv_app_hom_hom_hom, CategoryTheory.Functor.mapGrp_map_hom_hom, CategoryTheory.CommGrp.forget₂Grp_map_hom, comp_hom_hom, braiding_inv_hom_hom, CategoryTheory.Functor.mapCommGrpIdIso_hom_app_hom_hom_hom, CategoryTheory.CommGrp.mkIso_hom_hom, CategoryTheory.instFullGrpFunctorOppositeGrpCatYonedaGrp, tensorObj_X, Hom.hom_mul, CategoryTheory.yonedaCommGrpGrpObj_obj_coe, tensorObj_mul, rightUnitor_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_inv_app_hom_hom_hom, forget₂Mon_obj_X, instIsCommMonObj, forget₂Mon_comp_forget, CategoryTheory.Functor.Full.mapGrp, CategoryTheory.Functor.FullyFaithful.mapCommGrp_preimage, CategoryTheory.CommGrp.instIsIsoGrpHom, tensorObj_one, CategoryTheory.Functor.mapGrpIdIso_inv_app_hom_hom, CategoryTheory.CommGrp.mkIso_hom_hom_hom_hom, leftUnitor_inv_hom, CategoryTheory.CommGrp.id_hom, CategoryTheory.Functor.mapGrp_obj_grp_mul, mkIso_inv_hom_hom, snd_hom_hom, CategoryTheory.Functor.mapGrpNatTrans_app_hom_hom, hom_one, forget₂Mon_obj_one, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_hom_app_hom_hom_hom, CategoryTheory.Functor.mapCommGrpIdIso_inv_app_hom_hom_hom, CategoryTheory.yonedaCommGrpGrp_map_app, associator_inv_hom, CategoryTheory.Functor.mapGrpNatIso_inv_app_hom_hom, CategoryTheory.Functor.mapGrpCompIso_inv_app_hom_hom, Hom.hom_inv, CategoryTheory.Functor.mapCommGrpNatIso_hom_app_hom_hom_hom, instFaithfulMonForget₂Mon, braiding_hom_hom, CategoryTheory.Functor.mapCommGrp_map_hom_hom_hom, CategoryTheory.Functor.mapGrp_obj_grp_inv, η_def, associator_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_inverse_map, CategoryTheory.Functor.mapCommGrpNatTrans_app_hom_hom_hom, CategoryTheory.Functor.Faithful.mapGrp, forget_obj, CategoryTheory.yonedaGrp_map_app, CategoryTheory.CommGrp.mkIso'_hom_hom_hom_hom, whiskerRight_hom, CategoryTheory.Functor.mapCommGrp_obj_grp_mul, tensorHom_hom, Hom.hom_one, CategoryTheory.Equivalence.mapGrp_functor, fst_hom_hom, mkIso'_inv_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_functor_map_hom_hom_hom, braiding_hom_hom_hom, instFaithfulForget, comp_hom, instFullMonForget₂Mon, CategoryTheory.Functor.mapGrp_obj_X, id_hom_hom, CategoryTheory.Functor.mapCommGrp_obj_grp_inv, CategoryTheory.Adjunction.mapGrp_counit, CategoryTheory.Functor.comp_mapGrp_one, CategoryTheory.CommGrp.forget_map, CategoryTheory.CommGrp.instFullGrpForget₂Grp
|
instInhabited 📖 | CompOp | — |
instMonoidalCategory 📖 | CompOp | 12 mathmath: ε_def, hom_mul, instIsMonHom, μ_def, δ_def, braiding_inv_hom, braiding_inv_hom_hom, instIsCommMonObj, hom_one, braiding_hom_hom, η_def, braiding_hom_hom_hom
|
instMonoidalCategoryStruct 📖 | CompOp | 23 mathmath: whiskerLeft_hom_hom, leftUnitor_hom_hom, rightUnitor_hom_hom_hom, associator_inv_hom_hom, leftUnitor_hom_hom_hom, rightUnitor_inv_hom_hom, whiskerRight_hom_hom, tensorUnit_mul, tensorUnit_X, whiskerLeft_hom, leftUnitor_inv_hom_hom, rightUnitor_inv_hom, associator_hom_hom_hom, tensorUnit_one, tensorObj_X, tensorObj_mul, rightUnitor_hom_hom, tensorObj_one, leftUnitor_inv_hom, associator_inv_hom, associator_hom_hom, whiskerRight_hom, tensorHom_hom
|
instMonoidalMonForget₂Mon 📖 | CompOp | 4 mathmath: ε_def, μ_def, δ_def, η_def
|
mkIso 📖 | CompOp | 4 mathmath: mkIso_inv_hom, mkIso_hom_hom, mkIso_hom_hom_hom, mkIso_inv_hom_hom
|
mkIso' 📖 | CompOp | 2 mathmath: mkIso'_hom_hom_hom, mkIso'_inv_hom_hom
|
toMon 📖 | CompOp | 93 mathmath: mkIso_inv_hom, Hom.hom_div, comp', mkIso_hom_hom, instIsIsoHomHomMon, homMk'_hom, Hom.hom_hom_zpow, CategoryTheory.Functor.mapCommGrpCompIso_inv_app_hom_hom_hom, id', CategoryTheory.Functor.FullyFaithful.mapGrp_preimage, CategoryTheory.CommGrp.mkIso_inv_hom, whiskerLeft_hom_hom, CategoryTheory.Functor.mapGrpIdIso_hom_app_hom_hom, leftUnitor_hom_hom, rightUnitor_hom_hom_hom, lift_hom, hom_mul, Hom.hom_zpow, CategoryTheory.Functor.mapCommGrpCompIso_hom_app_hom_hom_hom, associator_inv_hom_hom, Hom.hom_hom_div, leftUnitor_hom_hom_hom, CategoryTheory.CommGrp.instIsIsoMonHomGrp, forget_map, mkIso_hom_hom_hom, CategoryTheory.CommGrp.forget₂CommMon_map_hom, rightUnitor_inv_hom_hom, forget₂Mon_map_hom, whiskerRight_hom_hom, Hom.hom_hom_inv, CategoryTheory.Preadditive.commGrpEquivalenceAux_hom_app_hom_hom_hom, snd_hom, whiskerLeft_hom, CategoryTheory.Functor.mapGrpNatIso_hom_app_hom_hom, leftUnitor_inv_hom_hom, CategoryTheory.Functor.mapCommGrpNatIso_inv_app_hom_hom_hom, rightUnitor_inv_hom, CategoryTheory.CommGrp.hom_ext_iff, Hom.hom_pow, associator_hom_hom_hom, toMon_X, braiding_inv_hom, mkIso'_hom_hom_hom, id_hom, CategoryTheory.Functor.mapGrpCompIso_hom_app_hom_hom, fst_hom, CategoryTheory.CommGrp.mkIso_inv_hom_hom_hom, CategoryTheory.CommGrp.mkIso'_inv_hom_hom_hom, CategoryTheory.Preadditive.commGrpEquivalenceAux_inv_app_hom_hom_hom, CategoryTheory.Functor.mapGrp_map_hom_hom, CategoryTheory.CommGrp.forget₂Grp_map_hom, comp_hom_hom, braiding_inv_hom_hom, CategoryTheory.Functor.mapCommGrpIdIso_hom_app_hom_hom_hom, CategoryTheory.CommGrp.mkIso_hom_hom, Hom.hom_mul, rightUnitor_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_inv_app_hom_hom_hom, hom_ext_iff, homMk''_hom_hom, CategoryTheory.Functor.FullyFaithful.mapCommGrp_preimage, CategoryTheory.Functor.mapGrpIdIso_inv_app_hom_hom, CategoryTheory.CommGrp.mkIso_hom_hom_hom_hom, leftUnitor_inv_hom, mkIso_inv_hom_hom, snd_hom_hom, CategoryTheory.Functor.mapGrpNatTrans_app_hom_hom, hom_one, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_hom_app_hom_hom_hom, CategoryTheory.Functor.mapCommGrpIdIso_inv_app_hom_hom_hom, associator_inv_hom, homMk_hom_hom, CategoryTheory.Functor.mapGrpNatIso_inv_app_hom_hom, CategoryTheory.Functor.mapGrpCompIso_inv_app_hom_hom, Hom.hom_inv, CategoryTheory.Functor.mapCommGrpNatIso_hom_app_hom_hom_hom, braiding_hom_hom, CategoryTheory.Functor.mapCommGrp_map_hom_hom_hom, associator_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_inverse_map, CategoryTheory.Functor.mapCommGrpNatTrans_app_hom_hom_hom, CategoryTheory.yonedaGrp_map_app, CategoryTheory.CommGrp.mkIso'_hom_hom_hom_hom, whiskerRight_hom, tensorHom_hom, Hom.hom_one, fst_hom_hom, mkIso'_inv_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_functor_map_hom_hom_hom, braiding_hom_hom_hom, comp_hom, id_hom_hom, CategoryTheory.CommGrp.forget_map
|
toMon_ 📖 | CompOp | — |
trivial 📖 | CompOp | 4 mathmath: trivial_grp_inv, trivial_grp_one, trivial_grp_mul, trivial_X
|
uniqueHomFromTrivial 📖 | CompOp | — |