Documentation

Mathlib.CategoryTheory.Monoidal.Cartesian.Grp_

Yoneda embedding of Grp C #

We show that group objects are exactly those whose yoneda presheaf is a presheaf of groups, by constructing the yoneda embedding Grp C ⥤ Cᵒᵖ ⥤ GrpCat.{v} and showing that it is fully faithful and its (essential) image is the representable functors.

If X represents a presheaf of monoids, then X is a monoid object.

Equations
    Instances For
      @[deprecated CategoryTheory.GrpObj.ofRepresentableBy (since := "2025-09-13")]

      Alias of CategoryTheory.GrpObj.ofRepresentableBy.


      If X represents a presheaf of monoids, then X is a monoid object.

      Equations
        Instances For
          @[reducible, inline]

          If G is a group object, then Hom(X, G) has a group structure.

          Equations
            Instances For

              If G is a group object, then Hom(-, G) is a presheaf of groups.

              Equations
                Instances For

                  If G is a monoid object, then Hom(-, G) as a presheaf of monoids is represented by G.

                  Equations
                    Instances For
                      @[deprecated CategoryTheory.GrpObj.ofRepresentableBy_yonedaGrpObjRepresentableBy (since := "2025-09-13")]

                      Alias of CategoryTheory.GrpObj.ofRepresentableBy_yonedaGrpObjRepresentableBy.

                      If X represents a presheaf of groups F, then Hom(-, X) is isomorphic to F as a presheaf of groups.

                      Equations
                        Instances For
                          @[simp]
                          theorem CategoryTheory.yonedaGrpObjIsoOfRepresentableBy_inv {C : Type u} [Category.{v, u} C] [CartesianMonoidalCategory C] (X : C) (F : Functor Cᵒᵖ GrpCat) (α : (F.comp (forget GrpCat)).RepresentableBy X) :
                          (yonedaGrpObjIsoOfRepresentableBy X F α).inv = { app := fun (X_1 : Cᵒᵖ) => GrpCat.ofHom { toEquiv := α.homEquiv.symm, map_mul' := }, naturality := }
                          @[simp]
                          theorem CategoryTheory.yonedaGrpObjIsoOfRepresentableBy_hom {C : Type u} [Category.{v, u} C] [CartesianMonoidalCategory C] (X : C) (F : Functor Cᵒᵖ GrpCat) (α : (F.comp (forget GrpCat)).RepresentableBy X) :
                          (yonedaGrpObjIsoOfRepresentableBy X F α).hom = { app := fun (X_1 : Cᵒᵖ) => GrpCat.ofHom { toEquiv := α.homEquiv, map_mul' := }, naturality := }

                          The yoneda embedding of Grp_C into presheaves of groups.

                          Equations
                            Instances For

                              The yoneda embedding for Grp_C is fully faithful.

                              Equations
                                Instances For
                                  @[deprecated CategoryTheory.GrpObj.inv_comp (since := "2025-09-13")]

                                  Alias of CategoryTheory.GrpObj.inv_comp.

                                  @[deprecated CategoryTheory.GrpObj.div_comp (since := "2025-09-13")]

                                  Alias of CategoryTheory.GrpObj.div_comp.

                                  @[deprecated CategoryTheory.GrpObj.zpow_comp (since := "2025-09-13")]
                                  theorem CategoryTheory.Grp_Class.zpow_comp {C : Type u} [Category.{v, u} C] [CartesianMonoidalCategory C] {G H X : C} [GrpObj G] [GrpObj H] (f : X G) (n : ) (g : G H) [IsMonHom g] :

                                  Alias of CategoryTheory.GrpObj.zpow_comp.

                                  @[deprecated CategoryTheory.GrpObj.comp_inv (since := "2025-09-13")]

                                  Alias of CategoryTheory.GrpObj.comp_inv.

                                  @[deprecated CategoryTheory.GrpObj.comp_div (since := "2025-09-13")]

                                  Alias of CategoryTheory.GrpObj.comp_div.

                                  @[deprecated CategoryTheory.GrpObj.comp_zpow (since := "2025-09-13")]
                                  theorem CategoryTheory.Grp_Class.comp_zpow {C : Type u} [Category.{v, u} C] [CartesianMonoidalCategory C] {G X Y : C} [GrpObj G] (f : X Y) (g : Y G) (n : ) :

                                  Alias of CategoryTheory.GrpObj.comp_zpow.

                                  @[simp]

                                  If G is a group object and F is monoidal, then Hom(X, G) → Hom(F X, F G) preserves inverses.

                                  @[deprecated CategoryTheory.GrpObj.inv_eq_inv (since := "2025-09-13")]

                                  Alias of CategoryTheory.GrpObj.inv_eq_inv.

                                  The commutator of G as a morphism. This is the map (x, y) ↦ x * y * x⁻¹ * y⁻¹, see CategoryTheory.GrpObj.lift_commutator_eq_mul_mul_inv_inv. This morphism is constant with value 1 if and only if G is commutative (see CategoryTheory.isCommMonObj_iff_commutator_eq_toUnit_η).

                                  Equations
                                    Instances For
                                      @[simp]
                                      theorem CategoryTheory.Grp.Hom.hom_pow {C : Type u} [Category.{v, u} C] [CartesianMonoidalCategory C] [BraidedCategory C] {G H : Grp C} [IsCommMonObj H.X] (f : G H) (n : ) :
                                      (f ^ n).hom = f.hom ^ n

                                      A commutative group object is a group object in the category of group objects.

                                      Equations
                                        @[deprecated CategoryTheory.Grp.Hom.hom_hom_inv (since := "2025-12-18")]

                                        Alias of CategoryTheory.Grp.Hom.hom_hom_inv.

                                        @[deprecated CategoryTheory.Grp.Hom.hom_hom_div (since := "2025-12-18")]

                                        Alias of CategoryTheory.Grp.Hom.hom_hom_div.

                                        @[deprecated CategoryTheory.Grp.Hom.hom_hom_zpow (since := "2025-12-18")]
                                        theorem CategoryTheory.Grp.Hom.hom_zpow {C : Type u} [Category.{v, u} C] [CartesianMonoidalCategory C] [BraidedCategory C] {G H : Grp C} [IsCommMonObj H.X] (f : G H) (n : ) :
                                        (f ^ n).hom.hom = f.hom.hom ^ n

                                        Alias of CategoryTheory.Grp.Hom.hom_hom_zpow.

                                        A commutative group object is a commutative group object in the category of group objects.

                                        @[reducible, inline]

                                        If G is a commutative group object, then Hom(X, G) has a commutative group structure.

                                        Equations
                                          Instances For

                                            G is a commutative group object if and only if the commutator map (x, y) ↦ x * y * x⁻¹ * y⁻¹ is constant.