Documentation Verification Report

DayFunctor

📁 Source: Mathlib/CategoryTheory/Monoidal/DayConvolution/DayFunctor.lean

Statistics

MetricCount
DefinitionsDayFunctor, natTrans, equiv, functor, inst, instCategory, instLawfulDayConvolutionMonoidalCategoryStruct, isoPointwiseLeftKanExtension, tensorDesc, unitDesc, «term_⊛⥤_», η, ν, νNatTrans
14
Theoremscomp_natTrans, equiv_counitIso_hom_app, equiv_counitIso_inv_app, equiv_functor_map, equiv_functor_obj, equiv_inverse_map_natTrans, equiv_inverse_obj_functor, equiv_unitIso_hom_app, equiv_unitIso_inv_app, functor_mk, hom_ext, hom_ext_iff, id_natTrans, instIsLeftKanExtensionDiscretePUnitFunctorTensorUnitνNatTrans, instIsLeftKanExtensionProdFunctorTensorObjη, mk_functor, tensor_hom_ext, unit_hom_ext, η_comp_isoPointwiseLeftKanExtension_hom, η_comp_tensorDec, η_comp_tensorDesc_app, η_comp_tensorDesc_app_assoc, ι_comp_isoPointwiseLeftKanExtension_inv, ι_map, ι_obj, νNatTrans_app, ν_comp_unitDesc, ν_comp_unitDesc_assoc
28
Total42

CategoryTheory.MonoidalCategory

Definitions

NameCategoryTheorems
DayFunctor 📖CompData
22 mathmath: DayFunctor.instIsLeftKanExtensionDiscretePUnitFunctorTensorUnitνNatTrans, DayFunctor.equiv_unitIso_hom_app, DayFunctor.ν_comp_unitDesc_assoc, DayFunctor.id_natTrans, DayFunctor.η_comp_tensorDec, DayFunctor.equiv_inverse_obj_functor, DayFunctor.equiv_inverse_map_natTrans, DayFunctor.η_comp_tensorDesc_app, DayFunctor.equiv_counitIso_inv_app, DayFunctor.equiv_functor_map, DayFunctor.equiv_counitIso_hom_app, DayFunctor.equiv_functor_obj, DayFunctor.η_comp_tensorDesc_app_assoc, DayFunctor.comp_natTrans, DayFunctor.ι_obj, DayFunctor.νNatTrans_app, DayFunctor.instIsLeftKanExtensionProdFunctorTensorObjη, DayFunctor.equiv_unitIso_inv_app, DayFunctor.ν_comp_unitDesc, DayFunctor.η_comp_isoPointwiseLeftKanExtension_hom, DayFunctor.ι_map, DayFunctor.ι_comp_isoPointwiseLeftKanExtension_inv

CategoryTheory.MonoidalCategory.DayFunctor

Definitions

NameCategoryTheorems
equiv 📖CompOp
8 mathmath: equiv_unitIso_hom_app, equiv_inverse_obj_functor, equiv_inverse_map_natTrans, equiv_counitIso_inv_app, equiv_functor_map, equiv_counitIso_hom_app, equiv_functor_obj, equiv_unitIso_inv_app
functor 📖CompOp
19 mathmath: instIsLeftKanExtensionDiscretePUnitFunctorTensorUnitνNatTrans, ν_comp_unitDesc_assoc, id_natTrans, η_comp_tensorDec, equiv_inverse_obj_functor, η_comp_tensorDesc_app, equiv_counitIso_inv_app, equiv_counitIso_hom_app, functor_mk, equiv_functor_obj, η_comp_tensorDesc_app_assoc, comp_natTrans, ι_obj, νNatTrans_app, mk_functor, instIsLeftKanExtensionProdFunctorTensorObjη, ν_comp_unitDesc, η_comp_isoPointwiseLeftKanExtension_hom, ι_comp_isoPointwiseLeftKanExtension_inv
inst 📖CompOp
12 mathmath: instIsLeftKanExtensionDiscretePUnitFunctorTensorUnitνNatTrans, ν_comp_unitDesc_assoc, η_comp_tensorDec, η_comp_tensorDesc_app, η_comp_tensorDesc_app_assoc, ι_obj, νNatTrans_app, instIsLeftKanExtensionProdFunctorTensorObjη, ν_comp_unitDesc, η_comp_isoPointwiseLeftKanExtension_hom, ι_map, ι_comp_isoPointwiseLeftKanExtension_inv
instCategory 📖CompOp
22 mathmath: instIsLeftKanExtensionDiscretePUnitFunctorTensorUnitνNatTrans, equiv_unitIso_hom_app, ν_comp_unitDesc_assoc, id_natTrans, η_comp_tensorDec, equiv_inverse_obj_functor, equiv_inverse_map_natTrans, η_comp_tensorDesc_app, equiv_counitIso_inv_app, equiv_functor_map, equiv_counitIso_hom_app, equiv_functor_obj, η_comp_tensorDesc_app_assoc, comp_natTrans, ι_obj, νNatTrans_app, instIsLeftKanExtensionProdFunctorTensorObjη, equiv_unitIso_inv_app, ν_comp_unitDesc, η_comp_isoPointwiseLeftKanExtension_hom, ι_map, ι_comp_isoPointwiseLeftKanExtension_inv
instLawfulDayConvolutionMonoidalCategoryStruct 📖CompOp
2 mathmath: ι_obj, ι_map
isoPointwiseLeftKanExtension 📖CompOp
2 mathmath: η_comp_isoPointwiseLeftKanExtension_hom, ι_comp_isoPointwiseLeftKanExtension_inv
tensorDesc 📖CompOp
3 mathmath: η_comp_tensorDec, η_comp_tensorDesc_app, η_comp_tensorDesc_app_assoc
unitDesc 📖CompOp
2 mathmath: ν_comp_unitDesc_assoc, ν_comp_unitDesc
«term_⊛⥤_» 📖CompOp
η 📖CompOp
6 mathmath: η_comp_tensorDec, η_comp_tensorDesc_app, η_comp_tensorDesc_app_assoc, instIsLeftKanExtensionProdFunctorTensorObjη, η_comp_isoPointwiseLeftKanExtension_hom, ι_comp_isoPointwiseLeftKanExtension_inv
ν 📖CompOp
3 mathmath: ν_comp_unitDesc_assoc, νNatTrans_app, ν_comp_unitDesc
νNatTrans 📖CompOp
2 mathmath: instIsLeftKanExtensionDiscretePUnitFunctorTensorUnitνNatTrans, νNatTrans_app

Theorems

NameKindAssumesProvesValidatesDepends On
comp_natTrans 📖mathematicalHom.natTrans
CategoryTheory.CategoryStruct.comp
CategoryTheory.MonoidalCategory.DayFunctor
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
functor
equiv_counitIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.DayFunctor
instCategory
functor
Hom.natTrans
CategoryTheory.Iso.hom
CategoryTheory.Equivalence.counitIso
equiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
equiv_counitIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.DayFunctor
instCategory
functor
Hom.natTrans
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.counitIso
equiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
equiv_functor_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.MonoidalCategory.DayFunctor
instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.functor
equiv
Hom.natTrans
equiv_functor_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.MonoidalCategory.DayFunctor
instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.functor
equiv
functor
equiv_inverse_map_natTrans 📖mathematicalHom.natTrans
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategory.DayFunctor
instCategory
CategoryTheory.Equivalence.inverse
equiv
equiv_inverse_obj_functor 📖mathematicalfunctor
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategory.DayFunctor
instCategory
CategoryTheory.Equivalence.inverse
equiv
equiv_unitIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategory.DayFunctor
instCategory
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
equiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
equiv_unitIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategory.DayFunctor
instCategory
CategoryTheory.Functor.id
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
equiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
functor_mk 📖mathematicalfunctor
hom_ext 📖Hom.natTrans
hom_ext_iff 📖mathematicalHom.natTranshom_ext
id_natTrans 📖mathematicalHom.natTrans
CategoryTheory.CategoryStruct.id
CategoryTheory.MonoidalCategory.DayFunctor
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
functor
instIsLeftKanExtensionDiscretePUnitFunctorTensorUnitνNatTrans 📖mathematicalCategoryTheory.Functor.HasPointwiseLeftKanExtension
CategoryTheory.uniformProd
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.prod'
CategoryTheory.Functor.prod
CategoryTheory.Functor.id
CategoryTheory.Functor.IsLeftKanExtension
functor
CategoryTheory.MonoidalCategory.DayFunctor
instCategory
inst
νNatTrans
CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension.isLeftKanExtension
instIsLeftKanExtensionProdFunctorTensorObjη 📖mathematicalCategoryTheory.Functor.HasPointwiseLeftKanExtension
CategoryTheory.uniformProd
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.prod'
CategoryTheory.Functor.prod
CategoryTheory.Functor.id
CategoryTheory.Functor.IsLeftKanExtension
functor
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.DayFunctor
instCategory
inst
η
CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension.isLeftKanExtension
mk_functor 📖mathematicalfunctor
tensor_hom_ext 📖CategoryTheory.Functor.HasPointwiseLeftKanExtension
CategoryTheory.uniformProd
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.prod'
CategoryTheory.Functor.prod
CategoryTheory.Functor.id
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
functor
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.DayFunctor
instCategory
inst
CategoryTheory.NatTrans.app
η
Hom.natTrans
hom_ext
CategoryTheory.Functor.hom_ext_of_isLeftKanExtension
instIsLeftKanExtensionProdFunctorTensorObjη
CategoryTheory.NatTrans.ext'
unit_hom_ext 📖CategoryTheory.Functor.HasPointwiseLeftKanExtension
CategoryTheory.uniformProd
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.prod'
CategoryTheory.Functor.prod
CategoryTheory.Functor.id
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
functor
CategoryTheory.MonoidalCategory.DayFunctor
instCategory
inst
ν
CategoryTheory.NatTrans.app
Hom.natTrans
hom_ext
CategoryTheory.Functor.hom_ext_of_isLeftKanExtension
instIsLeftKanExtensionDiscretePUnitFunctorTensorUnitνNatTrans
CategoryTheory.NatTrans.ext'
η_comp_isoPointwiseLeftKanExtension_hom 📖mathematicalCategoryTheory.Functor.HasPointwiseLeftKanExtension
CategoryTheory.uniformProd
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.prod'
CategoryTheory.Functor.prod
CategoryTheory.Functor.id
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
functor
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.DayFunctor
instCategory
inst
CategoryTheory.Functor.pointwiseLeftKanExtension
CategoryTheory.NatTrans.app
η
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
isoPointwiseLeftKanExtension
CategoryTheory.Limits.colimit.ι
CategoryTheory.CostructuredArrow.proj
CategoryTheory.CategoryStruct.id
instIsLeftKanExtensionProdFunctorTensorObjη
CategoryTheory.Functor.leftKanExtensionUnique_hom
CategoryTheory.Functor.descOfIsLeftKanExtension_fac_app
η_comp_tensorDec 📖mathematicalCategoryTheory.Functor.HasPointwiseLeftKanExtension
CategoryTheory.uniformProd
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.prod'
CategoryTheory.Functor.prod
CategoryTheory.Functor.id
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
functor
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.DayFunctor
instCategory
inst
η
CategoryTheory.Functor.whiskerLeft
Hom.natTrans
tensorDesc
CategoryTheory.Functor.descOfIsLeftKanExtension_fac
instIsLeftKanExtensionProdFunctorTensorObjη
η_comp_tensorDesc_app 📖mathematicalCategoryTheory.Functor.HasPointwiseLeftKanExtension
CategoryTheory.uniformProd
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.prod'
CategoryTheory.Functor.prod
CategoryTheory.Functor.id
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
functor
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.DayFunctor
instCategory
inst
CategoryTheory.NatTrans.app
η
Hom.natTrans
tensorDesc
CategoryTheory.Functor.descOfIsLeftKanExtension_fac_app
instIsLeftKanExtensionProdFunctorTensorObjη
η_comp_tensorDesc_app_assoc 📖mathematicalCategoryTheory.Functor.HasPointwiseLeftKanExtension
CategoryTheory.uniformProd
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.prod'
CategoryTheory.Functor.prod
CategoryTheory.Functor.id
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
functor
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.DayFunctor
instCategory
inst
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
η
Hom.natTrans
tensorDesc
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
η_comp_tensorDesc_app
ι_comp_isoPointwiseLeftKanExtension_inv 📖mathematicalCategoryTheory.Functor.HasPointwiseLeftKanExtension
CategoryTheory.uniformProd
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.prod'
CategoryTheory.Functor.prod
CategoryTheory.Functor.id
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
functor
CategoryTheory.CategoryStruct.id
CategoryTheory.Limits.colimit
CategoryTheory.MonoidalCategory.DayFunctor
instCategory
inst
CategoryTheory.Limits.colimit.ι
CategoryTheory.NatTrans.app
CategoryTheory.Functor.pointwiseLeftKanExtension
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
isoPointwiseLeftKanExtension
η
CategoryTheory.Functor.leftKanExtensionUnique_inv
instIsLeftKanExtensionProdFunctorTensorObjη
CategoryTheory.Functor.pointwiseLeftKanExtension_desc_app
CategoryTheory.Limits.colimit.ι_desc
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
ι_map 📖mathematicalCategoryTheory.Functor.HasPointwiseLeftKanExtension
CategoryTheory.uniformProd
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.prod'
CategoryTheory.Functor.prod
CategoryTheory.Functor.id
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategory.DayFunctor
instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategory.LawfulDayConvolutionMonoidalCategoryStruct.ι
inst
instLawfulDayConvolutionMonoidalCategoryStruct
Hom.natTrans
ι_obj 📖mathematicalCategoryTheory.Functor.HasPointwiseLeftKanExtension
CategoryTheory.uniformProd
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.prod'
CategoryTheory.Functor.prod
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategory.DayFunctor
instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategory.LawfulDayConvolutionMonoidalCategoryStruct.ι
inst
instLawfulDayConvolutionMonoidalCategoryStruct
functor
νNatTrans_app 📖mathematicalCategoryTheory.Functor.HasPointwiseLeftKanExtension
CategoryTheory.uniformProd
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.prod'
CategoryTheory.Functor.prod
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
functor
CategoryTheory.MonoidalCategory.DayFunctor
instCategory
inst
νNatTrans
ν
ν_comp_unitDesc 📖mathematicalCategoryTheory.Functor.HasPointwiseLeftKanExtension
CategoryTheory.uniformProd
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.prod'
CategoryTheory.Functor.prod
CategoryTheory.Functor.id
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
functor
CategoryTheory.MonoidalCategory.DayFunctor
instCategory
inst
ν
CategoryTheory.NatTrans.app
Hom.natTrans
unitDesc
CategoryTheory.Functor.descOfIsLeftKanExtension_fac_app
instIsLeftKanExtensionDiscretePUnitFunctorTensorUnitνNatTrans
CategoryTheory.Category.id_comp
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
ν_comp_unitDesc_assoc 📖mathematicalCategoryTheory.Functor.HasPointwiseLeftKanExtension
CategoryTheory.uniformProd
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.prod'
CategoryTheory.Functor.prod
CategoryTheory.Functor.id
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
functor
CategoryTheory.MonoidalCategory.DayFunctor
instCategory
inst
ν
CategoryTheory.NatTrans.app
Hom.natTrans
unitDesc
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ν_comp_unitDesc

CategoryTheory.MonoidalCategory.DayFunctor.Hom

Definitions

NameCategoryTheorems
natTrans 📖CompOp
13 mathmath: CategoryTheory.MonoidalCategory.DayFunctor.ν_comp_unitDesc_assoc, CategoryTheory.MonoidalCategory.DayFunctor.id_natTrans, CategoryTheory.MonoidalCategory.DayFunctor.η_comp_tensorDec, CategoryTheory.MonoidalCategory.DayFunctor.hom_ext_iff, CategoryTheory.MonoidalCategory.DayFunctor.equiv_inverse_map_natTrans, CategoryTheory.MonoidalCategory.DayFunctor.η_comp_tensorDesc_app, CategoryTheory.MonoidalCategory.DayFunctor.equiv_counitIso_inv_app, CategoryTheory.MonoidalCategory.DayFunctor.equiv_functor_map, CategoryTheory.MonoidalCategory.DayFunctor.equiv_counitIso_hom_app, CategoryTheory.MonoidalCategory.DayFunctor.η_comp_tensorDesc_app_assoc, CategoryTheory.MonoidalCategory.DayFunctor.comp_natTrans, CategoryTheory.MonoidalCategory.DayFunctor.ν_comp_unitDesc, CategoryTheory.MonoidalCategory.DayFunctor.ι_map

---

← Back to Index