Documentation

Mathlib.CategoryTheory.Monoidal.DayConvolution.DayFunctor

Day functors #

In this file, given a monoidal category C and a monoidal category V, we define a basic type synonym DayFunctor C V (denoted C ⊛⥤ D) for the category C ⥤ V and endow it with the monoidal structure coming from Day convolution. Such a setup is necessary as by default, the MonoidalCategory instance on C ⥤ V is the "pointwise" one, where the tensor product of F and G is the functor x ↦ F.obj x ⊗ G.obj x.

TODOs #

structure CategoryTheory.MonoidalCategory.DayFunctor (C : Type u₁) [Category.{v₁, u₁} C] (V : Type u₂) [Category.{v₂, u₂} V] [MonoidalCategory C] [MonoidalCategory V] :
Type (max (max (max u₁ u₂) v₁) v₂)

DayFunctor C V is a type synonym for C ⥤ V, implemented as a one-field structure.

  • functor : Functor C V

    the underlying functor.

Instances For

    Morphisms of Day functors are natural transformations of the underlying functors.

    Instances For

      The tautological equivalence of categories between C ⥤ V and C ⊛⥤ V.

      Equations
        Instances For
          @[simp]
          @[simp]
          theorem CategoryTheory.MonoidalCategory.DayFunctor.η_comp_isoPointwiseLeftKanExtension_hom {C : Type u₁} [Category.{v₁, u₁} C] {V : Type u₂} [Category.{v₂, u₂} V] [MonoidalCategory C] [MonoidalCategory V] [hasDayConvolution : ∀ (F G : Functor C V), (tensor C).HasPointwiseLeftKanExtension (externalProduct F G)] [hasDayConvolutionUnit : (Functor.fromPUnit (tensorUnit C)).HasPointwiseLeftKanExtension (Functor.fromPUnit (tensorUnit V))] [∀ (v : V) (d : C), Limits.PreservesColimitsOfShape (CostructuredArrow (tensor C) d) (tensorLeft v)] [∀ (v : V) (d : C), Limits.PreservesColimitsOfShape (CostructuredArrow (tensor C) d) (tensorRight v)] [∀ (v : V) (d : C), Limits.PreservesColimitsOfShape (CostructuredArrow (Functor.fromPUnit (tensorUnit C)) d) (tensorLeft v)] [∀ (v : V) (d : C), Limits.PreservesColimitsOfShape (CostructuredArrow (Functor.fromPUnit (tensorUnit C)) d) (tensorRight v)] [∀ (v : V) (d : C × C), Limits.PreservesColimitsOfShape (CostructuredArrow ((Functor.id C).prod (Functor.fromPUnit (tensorUnit C))) d) (tensorRight v)] [∀ (v : V) (d : C × C), Limits.PreservesColimitsOfShape (CostructuredArrow ((tensor C).prod (Functor.id C)) d) (tensorRight v)] (F G : DayFunctor C V) (x y : C) :
          @[simp]
          theorem CategoryTheory.MonoidalCategory.DayFunctor.ι_comp_isoPointwiseLeftKanExtension_inv {C : Type u₁} [Category.{v₁, u₁} C] {V : Type u₂} [Category.{v₂, u₂} V] [MonoidalCategory C] [MonoidalCategory V] [hasDayConvolution : ∀ (F G : Functor C V), (tensor C).HasPointwiseLeftKanExtension (externalProduct F G)] [hasDayConvolutionUnit : (Functor.fromPUnit (tensorUnit C)).HasPointwiseLeftKanExtension (Functor.fromPUnit (tensorUnit V))] [∀ (v : V) (d : C), Limits.PreservesColimitsOfShape (CostructuredArrow (tensor C) d) (tensorLeft v)] [∀ (v : V) (d : C), Limits.PreservesColimitsOfShape (CostructuredArrow (tensor C) d) (tensorRight v)] [∀ (v : V) (d : C), Limits.PreservesColimitsOfShape (CostructuredArrow (Functor.fromPUnit (tensorUnit C)) d) (tensorLeft v)] [∀ (v : V) (d : C), Limits.PreservesColimitsOfShape (CostructuredArrow (Functor.fromPUnit (tensorUnit C)) d) (tensorRight v)] [∀ (v : V) (d : C × C), Limits.PreservesColimitsOfShape (CostructuredArrow ((Functor.id C).prod (Functor.fromPUnit (tensorUnit C))) d) (tensorRight v)] [∀ (v : V) (d : C × C), Limits.PreservesColimitsOfShape (CostructuredArrow ((tensor C).prod (Functor.id C)) d) (tensorRight v)] (F G : DayFunctor C V) (x y : C) :

          The canonical map 𝟙_ V ⟶ (𝟙_ (C ⊛⥤ V)).functor.obj (𝟙_ C) that exhibits (𝟙_ (C ⊛⥤ V)).functor as a Day convolution unit.

          Equations
            Instances For

              Given F : C ⊛⥤ V, a morphism 𝟙_ V ⟶ F.functor.obj (𝟙_ C) induces a (unique) morphism 𝟙_ (C ⊛⥤ V) ⟶ F.

              Equations
                Instances For