Documentation Verification Report

Ind

📁 Source: Mathlib/CategoryTheory/MorphismProperty/Ind.lean

Statistics

MetricCount
DefinitionsPreIndSpreads, ind
2
Theoremsind_of_preIndSpreads, ind_of_preIndSpreads, exists_isPushout, exists_hom_of_isFinitelyPresentable, exists_isPushout_of_isFiltered, ind_iff_exists, ind_iff_ind_underMk, ind_ind, ind_underObj_pushout, instContainsIdentitiesInd, instIsStableUnderCobaseChangeIndOfHasPushouts, instRespectsIsoInd, instRespectsLeftInd, le_ind, underObj_ind_eq_ind_underObj
15
Total17

CategoryTheory.MorphismProperty

Definitions

NameCategoryTheorems
PreIndSpreads 📖CompData
ind 📖CompOp
11 mathmath: instRespectsIsoInd, ind_iff_ind_underMk, le_ind, instRespectsLeftInd, IsMultiplicative.ind_of_preIndSpreads, ind_ind, instIsStableUnderCobaseChangeIndOfHasPushouts, underObj_ind_eq_ind_underObj, ind_iff_exists, instContainsIdentitiesInd, IsStableUnderComposition.ind_of_preIndSpreads

Theorems

NameKindAssumesProvesValidatesDepends On
exists_hom_of_isFinitelyPresentable 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
CategoryTheory.IsFinitelyPresentable.exists_hom_of_isColimit_under
exists_isPushout_of_isFiltered 📖mathematicalCategoryTheory.Limits.Cocone.ptCategoryTheory.IsPushout
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
PreIndSpreads.exists_isPushout
ind_iff_exists 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
isFinitelyPresentable
ind
CategoryTheory.CategoryStruct.comp
ind_iff_ind_underMk
CategoryTheory.ObjectProperty.ind_iff_exists
CategoryTheory.Under.w
CategoryTheory.Category.assoc
CategoryTheory.Under.UnderMorphism.ext
ind_iff_ind_underMk 📖mathematicalind
CategoryTheory.ObjectProperty.ind
CategoryTheory.Under
CategoryTheory.instCategoryUnder
underObj
CategoryTheory.Category.comp_id
CategoryTheory.Under.UnderMorphism.ext
CategoryTheory.NatTrans.naturality
CategoryTheory.IsFiltered.nonempty
CategoryTheory.Category.id_comp
CategoryTheory.Under.w
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
CategoryTheory.Limits.instPreservesFilteredColimitsOfSizeUnderForget
ind_ind 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
isFinitelyPresentable
indle_antisymm
underObj_ind_eq_ind_underObj
CategoryTheory.ObjectProperty.ind_ind
CategoryTheory.Under.locallySmall
le_ind
ind_underObj_pushout 📖mathematicalCategoryTheory.ObjectProperty.ind
CategoryTheory.Under
CategoryTheory.instCategoryUnder
underObj
CategoryTheory.Functor.obj
CategoryTheory.Under.pushout
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.Under.pushoutIsLeftAdjoint
pushout_inr
instContainsIdentitiesInd 📖mathematicalContainsIdentities
ind
le_ind
id_mem
instIsStableUnderCobaseChangeIndOfHasPushouts 📖mathematicalIsStableUnderCobaseChange
ind
IsStableUnderCobaseChange.mk'
instRespectsIsoInd
IsStableUnderCobaseChange.respectsIso
ind_iff_ind_underMk
ind_underObj_pushout
instRespectsIsoInd 📖mathematicalRespectsIso
ind
instRespectsLeftInd
Respects.toRespectsLeft
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
instRespectsLeftInd 📖mathematicalRespectsLeft
CategoryTheory.Category.toCategoryStruct
ind
RespectsLeft.precomp
CategoryTheory.Category.assoc
le_ind 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
ind
CategoryTheory.isFiltered_of_directed_le_nonempty
OrderTop.instIsDirectedOrder
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
CategoryTheory.isConnected_of_nonempty_and_subsingleton
underObj_ind_eq_ind_underObj 📖mathematicalunderObj
ind
CategoryTheory.ObjectProperty.ind
CategoryTheory.Under
CategoryTheory.instCategoryUnder

CategoryTheory.MorphismProperty.IsMultiplicative

Theorems

NameKindAssumesProvesValidatesDepends On
ind_of_preIndSpreads 📖mathematicalCategoryTheory.IsFinitelyAccessibleCategory
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
CategoryTheory.MorphismProperty.isFinitelyPresentable
CategoryTheory.MorphismProperty.IsMultiplicative
CategoryTheory.MorphismProperty.ind
CategoryTheory.MorphismProperty.IsStableUnderComposition.ind_of_preIndSpreads
toIsStableUnderComposition
CategoryTheory.MorphismProperty.instContainsIdentitiesInd
toContainsIdentities

CategoryTheory.MorphismProperty.IsStableUnderComposition

Theorems

NameKindAssumesProvesValidatesDepends On
ind_of_preIndSpreads 📖mathematicalCategoryTheory.IsFinitelyAccessibleCategory
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
CategoryTheory.MorphismProperty.isFinitelyPresentable
CategoryTheory.MorphismProperty.IsStableUnderComposition
CategoryTheory.MorphismProperty.ind
CategoryTheory.MorphismProperty.ind_iff_exists
CategoryTheory.IsFinitelyPresentable.exists_hom_of_isColimit_under
CategoryTheory.Category.assoc
CategoryTheory.MorphismProperty.exists_isPushout_of_isFiltered
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Iso.isIso_inv
CategoryTheory.Under.final_forget
CategoryTheory.IsFiltered.toIsFilteredOrEmpty
CategoryTheory.Limits.comp_preservesColimit
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.Under.pushoutIsLeftAdjoint
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
CategoryTheory.Limits.instPreservesFilteredColimitsOfSizeUnderForget
CategoryTheory.IsFiltered.under
CategoryTheory.NatTrans.naturality
CategoryTheory.Category.id_comp
CategoryTheory.Limits.colimit.ι_desc
CategoryTheory.Limits.colimit.ι_desc_assoc
CategoryTheory.IsPushout.inl_isoPushout_inv
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.MorphismProperty.comp_mem
CategoryTheory.MorphismProperty.pushout_inl

CategoryTheory.MorphismProperty.PreIndSpreads

Theorems

NameKindAssumesProvesValidatesDepends On
exists_isPushout 📖mathematicalCategoryTheory.Limits.Cocone.ptCategoryTheory.IsPushout
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι

---

← Back to Index