Documentation

Mathlib.CategoryTheory.MorphismProperty.Ind

Ind and pro-properties #

Given a morphism property P, we define a morphism property ind P that is satisfied for f : X ⟶ Y if Y is a filtered colimit of Yᵢ and fᵢ : X ⟶ Yᵢ satisfy P.

We show that ind P inherits stability properties from P.

Main definitions #

Main results: #

TODOs: #

Let P be a property of morphisms. P.ind is satisfied for f : X ⟶ Y if there exists a family of natural maps tᵢ : X ⟶ Yᵢ and sᵢ : Yᵢ ⟶ Y indexed by J such that

  • J is filtered
  • Y ≅ colim Yᵢ via {sᵢ}ᵢ
  • tᵢ satisfies P for all i
  • f = tᵢ ≫ sᵢ for all i.

See CategoryTheory.MorphismProperty.ind_iff_ind_under_mk for an equivalent characterization in terms of Y as an object of Under X.

Equations
    Instances For
      theorem CategoryTheory.MorphismProperty.exists_hom_of_isFinitelyPresentable {C : Type u} [Category.{v, u} C] {J : Type w} [SmallCategory J] [IsFiltered J] {D : Functor J C} {c : Limits.Cocone D} (hc : Limits.IsColimit c) {X A : C} {p : X A} (hp : isFinitelyPresentable C p) (s : (Functor.const J).obj X D) (f : A c.pt) (h : ∀ (j : J), CategoryStruct.comp (s.app j) (c.ι.app j) = CategoryStruct.comp p f) :
      ∃ (j : J) (q : A D.obj j), CategoryStruct.comp p q = s.app j CategoryStruct.comp q (c.ι.app j) = f

      ind is idempotent if P implies finitely presentable.

      theorem CategoryTheory.MorphismProperty.ind_iff_exists {C : Type u} [Category.{v, u} C] {P : MorphismProperty C} (H : P isFinitelyPresentable C) {X Y : C} (f : X Y) [IsFinitelyAccessibleCategory (Under X)] :
      P.ind f ∀ {Z : C} (p : X Z) (g : Z Y), isFinitelyPresentable C pCategoryStruct.comp p g = f∃ (W : C) (u : Z W) (v : W Y), CategoryStruct.comp u v = g P (CategoryStruct.comp p u)

      A property of morphisms P is said to pre-ind-spread if P-morphisms out of filtered colimits descend to a finite level. More precisely, let Dᵢ be a filtered family of objects. Then:

      • If f : colim Dᵢ ⟶ T satisfies P, there exists an index j and a pushout square
          Dⱼ ----f'---> T'
          |             |
          |             |
          v             v
        colim Dᵢ --f--> T
        
        such that f' satisfies P.
      Instances
        theorem CategoryTheory.MorphismProperty.exists_isPushout_of_isFiltered {C : Type u} {inst✝ : Category.{v, u} C} {P : MorphismProperty C} [self : P.PreIndSpreads] {J : Type w} [SmallCategory J] [IsFiltered J] {D : Functor J C} {c : Limits.Cocone D} :
        ∀ (x : Limits.IsColimit c) {T : C} (f : c.pt T), P f∃ (j : J) (T' : C) (f' : D.obj j T') (g : T' T), IsPushout (c.ι.app j) f' f g P f'

        Alias of CategoryTheory.MorphismProperty.PreIndSpreads.exists_isPushout.

        If P ind-spreads and all under categories are finitely accessible, ind P is multiplicative if P is.