Documentation Verification Report

IsInvertedBy

📁 Source: Mathlib/CategoryTheory/MorphismProperty/IsInvertedBy.lean

Statistics

MetricCount
DefinitionsFunctorsInverting, mk, IsInvertedBy, instCategoryFunctorsInverting
4
Theoremscomp_hom, comp_hom_assoc, ext, ext_iff, hom_ext, hom_ext_iff, id_hom, iff_comp, iff_le_inverseImage_isomorphisms, iff_map_le_isomorphisms, iff_of_iso, isoClosure_iff, leftOp, map_iff, of_comp, of_le, op, pi, prod, rightOp, unop
21
Total25

CategoryTheory.MorphismProperty

Definitions

NameCategoryTheorems
FunctorsInverting 📖CompOp
15 mathmath: CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.functor_obj_obj_map, FunctorsInverting.id_hom, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.functor_obj_obj_obj, CategoryTheory.Localization.whiskeringLeftFunctor'_eq, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.inverse_map_app, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.functor_map_hom_app, FunctorsInverting.comp_hom_assoc, CategoryTheory.Localization.instIsEquivalenceFunctorFunctorsInvertingWhiskeringLeftFunctor, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.inverse_obj_map, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.inverse_obj_obj, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.unitIso_inv, FunctorsInverting.comp_hom, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.counitIso_inv, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.unitIso_hom, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.counitIso_hom
IsInvertedBy 📖MathDef
37 mathmath: IsInvertedBy.iff_comp, CategoryTheory.ObjectProperty.isoModSerre_isInvertedBy_iff, HomotopicalAlgebra.BifibrantObject.inverts_iff_factors, CategoryTheory.Functor.IsLocalization.inverts, IsCompatibleWithShift.shiftFunctor_comp_inverts, CategoryTheory.ObjectProperty.inverseImage_trW_isInverted, IsInvertedBy.iff_map_le_isomorphisms, HomotopyCategory.quotient_inverts_homotopyEquivalences, LeftFraction.Localization.StrictUniversalPropertyFixedTarget.inverts, HomologicalComplexUpToQuasiIso.Q_inverts_homotopyEquivalences, CategoryTheory.Localization.StrictUniversalPropertyFixedTarget.inverts, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.functor_obj_obj_map, FunctorsInverting.id_hom, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.functor_obj_obj_obj, CategoryTheory.GrothendieckTopology.W_isInvertedBy_whiskeringRight_presheafToSheaf, IsInvertedBy.iff_of_iso, CategoryTheory.Functor.mapHomologicalComplex_upToQuasiIso_Q_inverts_quasiIso, CategoryTheory.Localization.whiskeringLeftFunctor'_eq, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.inverse_map_app, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.functor_map_hom_app, CategoryTheory.GrothendieckTopology.Point.W_isInvertedBy_presheafFiber, FunctorsInverting.comp_hom_assoc, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.inverse_obj_map, IsInvertedBy.isoClosure_iff, HomologicalComplexUpToQuasiIso.Qh_inverts_quasiIso, IsInvertedBy.iff_le_inverseImage_isomorphisms, FunctorsInverting.ext_iff, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.inverse_obj_obj, CategoryTheory.Localization.HasProductsOfShapeAux.inverts, FunctorsInverting.comp_hom, CategoryTheory.LocalizerMorphism.inverts, CategoryTheory.Localization.inverts, Q_inverts, HomotopyCategory.homologyFunctor_inverts_quasiIso, HomologicalComplex.homologyFunctor_inverts_quasiIso, IsInvertedBy.map_iff, FunctorsInverting.hom_ext_iff
instCategoryFunctorsInverting 📖CompOp
15 mathmath: CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.functor_obj_obj_map, FunctorsInverting.id_hom, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.functor_obj_obj_obj, CategoryTheory.Localization.whiskeringLeftFunctor'_eq, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.inverse_map_app, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.functor_map_hom_app, FunctorsInverting.comp_hom_assoc, CategoryTheory.Localization.instIsEquivalenceFunctorFunctorsInvertingWhiskeringLeftFunctor, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.inverse_obj_map, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.inverse_obj_obj, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.unitIso_inv, FunctorsInverting.comp_hom, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.counitIso_inv, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.unitIso_hom, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.counitIso_hom

CategoryTheory.MorphismProperty.FunctorsInverting

Definitions

NameCategoryTheorems
mk 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
comp_hom 📖mathematicalCategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.MorphismProperty.IsInvertedBy
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.MorphismProperty.FunctorsInverting
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MorphismProperty.instCategoryFunctorsInverting
comp_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.MorphismProperty.IsInvertedBy
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.MorphismProperty.FunctorsInverting
CategoryTheory.MorphismProperty.instCategoryFunctorsInverting
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_hom
ext 📖CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.MorphismProperty.IsInvertedBy
ext_iff 📖mathematicalCategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.MorphismProperty.IsInvertedBy
ext
hom_ext 📖CategoryTheory.NatTrans.app
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.MorphismProperty.IsInvertedBy
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.hom_ext
CategoryTheory.NatTrans.ext
hom_ext_iff 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.MorphismProperty.IsInvertedBy
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
hom_ext
id_hom 📖mathematicalCategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.MorphismProperty.IsInvertedBy
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.CategoryStruct.id
CategoryTheory.MorphismProperty.FunctorsInverting
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MorphismProperty.instCategoryFunctorsInverting

CategoryTheory.MorphismProperty.IsInvertedBy

Theorems

NameKindAssumesProvesValidatesDepends On
iff_comp 📖mathematicalCategoryTheory.MorphismProperty.IsInvertedBy
CategoryTheory.Functor.comp
CategoryTheory.isIso_of_reflects_iso
of_comp
iff_le_inverseImage_isomorphisms 📖mathematicalCategoryTheory.MorphismProperty.IsInvertedBy
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
CategoryTheory.MorphismProperty.inverseImage
CategoryTheory.MorphismProperty.isomorphisms
iff_map_le_isomorphisms 📖mathematicalCategoryTheory.MorphismProperty.IsInvertedBy
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
CategoryTheory.MorphismProperty.map
CategoryTheory.MorphismProperty.isomorphisms
iff_le_inverseImage_isomorphisms
CategoryTheory.MorphismProperty.map_le_iff
CategoryTheory.MorphismProperty.RespectsIso.isomorphisms
iff_of_iso 📖mathematicalCategoryTheory.MorphismProperty.IsInvertedByCategoryTheory.NatIso.isIso_map_iff
isoClosure_iff 📖mathematicalCategoryTheory.MorphismProperty.IsInvertedBy
CategoryTheory.MorphismProperty.isoClosure
CategoryTheory.MorphismProperty.le_isoClosure
CategoryTheory.Arrow.iso_w'
CategoryTheory.Functor.map_comp
CategoryTheory.IsIso.comp_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Arrow.isIso_left
CategoryTheory.Iso.isIso_inv
CategoryTheory.Arrow.isIso_right
CategoryTheory.Iso.isIso_hom
leftOp 📖mathematicalCategoryTheory.MorphismProperty.IsInvertedBy
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.leftOp
CategoryTheory.isIso_unop
map_iff 📖mathematicalCategoryTheory.MorphismProperty.IsInvertedBy
CategoryTheory.MorphismProperty.map
CategoryTheory.Functor.comp
CategoryTheory.MorphismProperty.map_map
of_comp 📖mathematicalCategoryTheory.MorphismProperty.IsInvertedByCategoryTheory.Functor.compCategoryTheory.Functor.map_isIso
of_le 📖CategoryTheory.MorphismProperty.IsInvertedBy
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
op 📖mathematicalCategoryTheory.MorphismProperty.IsInvertedByOpposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.op
CategoryTheory.isIso_op
pi 📖mathematicalCategoryTheory.MorphismProperty.IsInvertedByCategoryTheory.pi
CategoryTheory.MorphismProperty.pi
CategoryTheory.Functor.pi
CategoryTheory.isIso_pi_iff
prod 📖mathematicalCategoryTheory.MorphismProperty.IsInvertedByCategoryTheory.prod'
CategoryTheory.MorphismProperty.prod
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.prod
CategoryTheory.isIso_prod_iff
rightOp 📖mathematicalCategoryTheory.MorphismProperty.IsInvertedBy
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.rightOpCategoryTheory.isIso_op
unop 📖mathematicalCategoryTheory.MorphismProperty.IsInvertedBy
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.unopCategoryTheory.isIso_unop

---

← Back to Index