Documentation

Mathlib.CategoryTheory.MorphismProperty.IsInvertedBy

Morphism properties that are inverted by a functor #

In this file, we introduce the predicate P.IsInvertedBy F which expresses that the morphisms satisfying P : MorphismProperty C are mapped to isomorphisms by a functor F : C โฅค D.

This is used in the localization of categories API (folder CategoryTheory.Localization).

If P : MorphismProperty C and F : C โฅค D, then P.IsInvertedBy F means that all morphisms in P are mapped by F to isomorphisms in D.

Equations
    Instances For
      theorem CategoryTheory.MorphismProperty.IsInvertedBy.of_comp {Cโ‚ : Type u_1} {Cโ‚‚ : Type u_2} {Cโ‚ƒ : Type u_3} [Category.{v_1, u_1} Cโ‚] [Category.{v_2, u_2} Cโ‚‚] [Category.{v_3, u_3} Cโ‚ƒ] (W : MorphismProperty Cโ‚) (F : Functor Cโ‚ Cโ‚‚) (hF : W.IsInvertedBy F) (G : Functor Cโ‚‚ Cโ‚ƒ) :
      theorem CategoryTheory.MorphismProperty.IsInvertedBy.prod {Cโ‚ : Type u_1} {Cโ‚‚ : Type u_2} [Category.{v_1, u_1} Cโ‚] [Category.{v_2, u_2} Cโ‚‚] {Wโ‚ : MorphismProperty Cโ‚} {Wโ‚‚ : MorphismProperty Cโ‚‚} {Eโ‚ : Type u_3} {Eโ‚‚ : Type u_4} [Category.{v_3, u_3} Eโ‚] [Category.{v_4, u_4} Eโ‚‚] {Fโ‚ : Functor Cโ‚ Eโ‚} {Fโ‚‚ : Functor Cโ‚‚ Eโ‚‚} (hโ‚ : Wโ‚.IsInvertedBy Fโ‚) (hโ‚‚ : Wโ‚‚.IsInvertedBy Fโ‚‚) :
      (Wโ‚.prod Wโ‚‚).IsInvertedBy (Fโ‚.prod Fโ‚‚)
      theorem CategoryTheory.MorphismProperty.IsInvertedBy.pi {J : Type w} {C : J โ†’ Type u} {D : J โ†’ Type u'} [(j : J) โ†’ Category.{v, u} (C j)] [(j : J) โ†’ Category.{v', u'} (D j)] (W : (j : J) โ†’ MorphismProperty (C j)) (F : (j : J) โ†’ Functor (C j) (D j)) (hF : โˆ€ (j : J), (W j).IsInvertedBy (F j)) :
      def CategoryTheory.MorphismProperty.FunctorsInverting {C : Type u} [Category.{v, u} C] (W : MorphismProperty C) (D : Type u_1) [Category.{v_1, u_1} D] :
      Type (max (max (max u u_1) v) v_1)

      The full subcategory of C โฅค D consisting of functors inverting morphisms in W

      Equations
        Instances For
          theorem CategoryTheory.MorphismProperty.FunctorsInverting.ext {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] {W : MorphismProperty C} {Fโ‚ Fโ‚‚ : W.FunctorsInverting D} (h : Fโ‚.obj = Fโ‚‚.obj) :
          Fโ‚ = Fโ‚‚
          theorem CategoryTheory.MorphismProperty.FunctorsInverting.ext_iff {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] {W : MorphismProperty C} {Fโ‚ Fโ‚‚ : W.FunctorsInverting D} :
          Fโ‚ = Fโ‚‚ โ†” Fโ‚.obj = Fโ‚‚.obj
          @[simp]
          theorem CategoryTheory.MorphismProperty.FunctorsInverting.comp_hom {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] {W : MorphismProperty C} {Fโ‚ Fโ‚‚ Fโ‚ƒ : W.FunctorsInverting D} (f : Fโ‚ โŸถ Fโ‚‚) (g : Fโ‚‚ โŸถ Fโ‚ƒ) :
          theorem CategoryTheory.MorphismProperty.FunctorsInverting.comp_hom_assoc {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] {W : MorphismProperty C} {Fโ‚ Fโ‚‚ Fโ‚ƒ : W.FunctorsInverting D} (f : Fโ‚ โŸถ Fโ‚‚) (g : Fโ‚‚ โŸถ Fโ‚ƒ) {Z : Functor C D} (h : Fโ‚ƒ.obj โŸถ Z) :
          theorem CategoryTheory.MorphismProperty.FunctorsInverting.hom_ext {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] {W : MorphismProperty C} {Fโ‚ Fโ‚‚ : W.FunctorsInverting D} {ฮฑ ฮฒ : Fโ‚ โŸถ Fโ‚‚} (h : ฮฑ.hom.app = ฮฒ.hom.app) :
          ฮฑ = ฮฒ
          theorem CategoryTheory.MorphismProperty.FunctorsInverting.hom_ext_iff {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] {W : MorphismProperty C} {Fโ‚ Fโ‚‚ : W.FunctorsInverting D} {ฮฑ ฮฒ : Fโ‚ โŸถ Fโ‚‚} :
          ฮฑ = ฮฒ โ†” ฮฑ.hom.app = ฮฒ.hom.app
          theorem CategoryTheory.MorphismProperty.IsInvertedBy.iff_of_iso {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (W : MorphismProperty C) {Fโ‚ Fโ‚‚ : Functor C D} (e : Fโ‚ โ‰… Fโ‚‚) :
          W.IsInvertedBy Fโ‚ โ†” W.IsInvertedBy Fโ‚‚
          @[simp]
          theorem CategoryTheory.MorphismProperty.IsInvertedBy.iff_comp {Cโ‚ : Type u_1} {Cโ‚‚ : Type u_2} {Cโ‚ƒ : Type u_3} [Category.{v_1, u_1} Cโ‚] [Category.{v_2, u_2} Cโ‚‚] [Category.{v_3, u_3} Cโ‚ƒ] (W : MorphismProperty Cโ‚) (F : Functor Cโ‚ Cโ‚‚) (G : Functor Cโ‚‚ Cโ‚ƒ) [G.ReflectsIsomorphisms] :
          theorem CategoryTheory.MorphismProperty.IsInvertedBy.map_iff {Cโ‚ : Type u_1} {Cโ‚‚ : Type u_2} {Cโ‚ƒ : Type u_3} [Category.{v_1, u_1} Cโ‚] [Category.{v_2, u_2} Cโ‚‚] [Category.{v_3, u_3} Cโ‚ƒ] (W : MorphismProperty Cโ‚) (F : Functor Cโ‚ Cโ‚‚) (G : Functor Cโ‚‚ Cโ‚ƒ) :