Morphism properties that are inverted by a functor #
In this file, we introduce the predicate P.IsInvertedBy F which expresses
that the morphisms satisfying P : MorphismProperty C are mapped to
isomorphisms by a functor F : C โฅค D.
This is used in the localization of categories API (folder CategoryTheory.Localization).
def
CategoryTheory.MorphismProperty.IsInvertedBy
{C : Type u}
[Category.{v, u} C]
{D : Type u'}
[Category.{v', u'} D]
(P : MorphismProperty C)
(F : Functor C D)
:
If P : MorphismProperty C and F : C โฅค D, then
P.IsInvertedBy F means that all morphisms in P are mapped by F
to isomorphisms in D.
Equations
Instances For
theorem
CategoryTheory.MorphismProperty.IsInvertedBy.of_le
{C : Type u}
[Category.{v, u} C]
{D : Type u'}
[Category.{v', u'} D]
(P Q : MorphismProperty C)
(F : Functor C D)
(hQ : Q.IsInvertedBy F)
(h : P โค Q)
:
P.IsInvertedBy F
theorem
CategoryTheory.MorphismProperty.IsInvertedBy.of_comp
{Cโ : Type u_1}
{Cโ : Type u_2}
{Cโ : Type u_3}
[Category.{v_1, u_1} Cโ]
[Category.{v_2, u_2} Cโ]
[Category.{v_3, u_3} Cโ]
(W : MorphismProperty Cโ)
(F : Functor Cโ Cโ)
(hF : W.IsInvertedBy F)
(G : Functor Cโ Cโ)
:
W.IsInvertedBy (F.comp G)
theorem
CategoryTheory.MorphismProperty.IsInvertedBy.op
{C : Type u}
[Category.{v, u} C]
{D : Type u'}
[Category.{v', u'} D]
{W : MorphismProperty C}
{L : Functor C D}
(h : W.IsInvertedBy L)
:
W.op.IsInvertedBy L.op
theorem
CategoryTheory.MorphismProperty.IsInvertedBy.rightOp
{C : Type u}
[Category.{v, u} C]
{D : Type u'}
[Category.{v', u'} D]
{W : MorphismProperty C}
{L : Functor Cแตแต D}
(h : W.op.IsInvertedBy L)
:
W.IsInvertedBy L.rightOp
theorem
CategoryTheory.MorphismProperty.IsInvertedBy.leftOp
{C : Type u}
[Category.{v, u} C]
{D : Type u'}
[Category.{v', u'} D]
{W : MorphismProperty C}
{L : Functor C Dแตแต}
(h : W.IsInvertedBy L)
:
W.op.IsInvertedBy L.leftOp
theorem
CategoryTheory.MorphismProperty.IsInvertedBy.unop
{C : Type u}
[Category.{v, u} C]
{D : Type u'}
[Category.{v', u'} D]
{W : MorphismProperty C}
{L : Functor Cแตแต Dแตแต}
(h : W.op.IsInvertedBy L)
:
W.IsInvertedBy L.unop
theorem
CategoryTheory.MorphismProperty.IsInvertedBy.prod
{Cโ : Type u_1}
{Cโ : Type u_2}
[Category.{v_1, u_1} Cโ]
[Category.{v_2, u_2} Cโ]
{Wโ : MorphismProperty Cโ}
{Wโ : MorphismProperty Cโ}
{Eโ : Type u_3}
{Eโ : Type u_4}
[Category.{v_3, u_3} Eโ]
[Category.{v_4, u_4} Eโ]
{Fโ : Functor Cโ Eโ}
{Fโ : Functor Cโ Eโ}
(hโ : Wโ.IsInvertedBy Fโ)
(hโ : Wโ.IsInvertedBy Fโ)
:
(Wโ.prod Wโ).IsInvertedBy (Fโ.prod Fโ)
theorem
CategoryTheory.MorphismProperty.IsInvertedBy.pi
{J : Type w}
{C : J โ Type u}
{D : J โ Type u'}
[(j : J) โ Category.{v, u} (C j)]
[(j : J) โ Category.{v', u'} (D j)]
(W : (j : J) โ MorphismProperty (C j))
(F : (j : J) โ Functor (C j) (D j))
(hF : โ (j : J), (W j).IsInvertedBy (F j))
:
def
CategoryTheory.MorphismProperty.FunctorsInverting
{C : Type u}
[Category.{v, u} C]
(W : MorphismProperty C)
(D : Type u_1)
[Category.{v_1, u_1} D]
:
Type (max (max (max u u_1) v) v_1)
The full subcategory of C โฅค D consisting of functors inverting morphisms in W
Equations
Instances For
theorem
CategoryTheory.MorphismProperty.FunctorsInverting.ext
{C : Type u}
[Category.{v, u} C]
{D : Type u'}
[Category.{v', u'} D]
{W : MorphismProperty C}
{Fโ Fโ : W.FunctorsInverting D}
(h : Fโ.obj = Fโ.obj)
:
theorem
CategoryTheory.MorphismProperty.FunctorsInverting.ext_iff
{C : Type u}
[Category.{v, u} C]
{D : Type u'}
[Category.{v', u'} D]
{W : MorphismProperty C}
{Fโ Fโ : W.FunctorsInverting D}
:
instance
CategoryTheory.MorphismProperty.instCategoryFunctorsInverting
{C : Type u}
[Category.{v, u} C]
(W : MorphismProperty C)
(D : Type u_1)
[Category.{v_1, u_1} D]
:
Equations
@[simp]
theorem
CategoryTheory.MorphismProperty.FunctorsInverting.id_hom
{C : Type u}
[Category.{v, u} C]
{D : Type u'}
[Category.{v', u'} D]
{W : MorphismProperty C}
(F : W.FunctorsInverting D)
:
@[simp]
theorem
CategoryTheory.MorphismProperty.FunctorsInverting.comp_hom
{C : Type u}
[Category.{v, u} C]
{D : Type u'}
[Category.{v', u'} D]
{W : MorphismProperty C}
{Fโ Fโ Fโ : W.FunctorsInverting D}
(f : Fโ โถ Fโ)
(g : Fโ โถ Fโ)
:
theorem
CategoryTheory.MorphismProperty.FunctorsInverting.comp_hom_assoc
{C : Type u}
[Category.{v, u} C]
{D : Type u'}
[Category.{v', u'} D]
{W : MorphismProperty C}
{Fโ Fโ Fโ : W.FunctorsInverting D}
(f : Fโ โถ Fโ)
(g : Fโ โถ Fโ)
{Z : Functor C D}
(h : Fโ.obj โถ Z)
:
CategoryStruct.comp (CategoryStruct.comp f g).hom h = CategoryStruct.comp f.hom (CategoryStruct.comp g.hom h)
theorem
CategoryTheory.MorphismProperty.FunctorsInverting.hom_ext
{C : Type u}
[Category.{v, u} C]
{D : Type u'}
[Category.{v', u'} D]
{W : MorphismProperty C}
{Fโ Fโ : W.FunctorsInverting D}
{ฮฑ ฮฒ : Fโ โถ Fโ}
(h : ฮฑ.hom.app = ฮฒ.hom.app)
:
theorem
CategoryTheory.MorphismProperty.FunctorsInverting.hom_ext_iff
{C : Type u}
[Category.{v, u} C]
{D : Type u'}
[Category.{v', u'} D]
{W : MorphismProperty C}
{Fโ Fโ : W.FunctorsInverting D}
{ฮฑ ฮฒ : Fโ โถ Fโ}
:
def
CategoryTheory.MorphismProperty.FunctorsInverting.mk
{C : Type u}
[Category.{v, u} C]
{W : MorphismProperty C}
{D : Type u_1}
[Category.{v_1, u_1} D]
(F : Functor C D)
(hF : W.IsInvertedBy F)
:
A constructor for W.FunctorsInverting D
Equations
Instances For
theorem
CategoryTheory.MorphismProperty.IsInvertedBy.iff_of_iso
{C : Type u}
[Category.{v, u} C]
{D : Type u'}
[Category.{v', u'} D]
(W : MorphismProperty C)
{Fโ Fโ : Functor C D}
(e : Fโ โ
Fโ)
:
@[simp]
theorem
CategoryTheory.MorphismProperty.IsInvertedBy.isoClosure_iff
{C : Type u}
[Category.{v, u} C]
{D : Type u'}
[Category.{v', u'} D]
(W : MorphismProperty C)
(F : Functor C D)
:
@[simp]
theorem
CategoryTheory.MorphismProperty.IsInvertedBy.iff_comp
{Cโ : Type u_1}
{Cโ : Type u_2}
{Cโ : Type u_3}
[Category.{v_1, u_1} Cโ]
[Category.{v_2, u_2} Cโ]
[Category.{v_3, u_3} Cโ]
(W : MorphismProperty Cโ)
(F : Functor Cโ Cโ)
(G : Functor Cโ Cโ)
[G.ReflectsIsomorphisms]
:
theorem
CategoryTheory.MorphismProperty.IsInvertedBy.iff_le_inverseImage_isomorphisms
{C : Type u}
[Category.{v, u} C]
{D : Type u'}
[Category.{v', u'} D]
(W : MorphismProperty C)
(F : Functor C D)
:
theorem
CategoryTheory.MorphismProperty.IsInvertedBy.iff_map_le_isomorphisms
{C : Type u}
[Category.{v, u} C]
{D : Type u'}
[Category.{v', u'} D]
(W : MorphismProperty C)
(F : Functor C D)
:
theorem
CategoryTheory.MorphismProperty.IsInvertedBy.map_iff
{Cโ : Type u_1}
{Cโ : Type u_2}
{Cโ : Type u_3}
[Category.{v_1, u_1} Cโ]
[Category.{v_2, u_2} Cโ]
[Category.{v_3, u_3} Cโ]
(W : MorphismProperty Cโ)
(F : Functor Cโ Cโ)
(G : Functor Cโ Cโ)
: