📁 Source: Mathlib/CategoryTheory/ObjectProperty/Opposite.lean
op
subtypeOpEquiv
unop
instIsClosedUnderIsomorphismsOppositeOp
instIsClosedUnderIsomorphismsUnopOfOpposite
op_iff
op_injective
op_injective_iff
op_isoClosure
op_monotone
op_monotone_iff
op_ofObj
op_singleton
op_unop
unop_iff
unop_injective
unop_injective_iff
unop_isoClosure
unop_monotone
unop_monotone_iff
unop_ofObj
unop_op
unop_singleton
colimitsOfShape_op
isClosedUnderColimitsOfShape_iff_op
CategoryTheory.isSeparating_unop_iff
instIsClosedUnderColimitsOfShapeOppositeOpOfIsClosedUnderLimitsOfShape
isDetecting_op_iff
instContainsZeroOppositeOp
isCoseparating_op_iff
limitsOfShape_op
CategoryTheory.isSeparating_op_iff
InheritedFromTarget.op
CategoryTheory.isCoseparating_op_iff
instSmallOppositeOp
instSmallOppositeOp_1
instIsClosedUnderLimitsOfShapeOppositeOpOfIsClosedUnderColimitsOfShape_1
limitsOfShape_eq_unop_colimitsOfShape
colimitsClosure_eq_unop_limitsClosure
instIsClosedUnderLimitsOfShapeOppositeOpOfIsClosedUnderColimitsOfShape
CategoryTheory.isCodetecting_op_iff
CategoryTheory.isCoseparating_unop_iff
instEssentiallySmallOppositeOp
instIsClosedUnderColimitsOfShapeOppositeOpOfIsClosedUnderLimitsOfShape_1
InheritedFromSource.op
CategoryTheory.isDetecting_op_iff
isClosedUnderColimitsOfShape_op_iff_op
isClosedUnderLimitsOfShape_op_iff_op
isCodetecting_op_iff
isSeparating_op_iff
colimitsOfShape_eq_unop_limitsOfShape
CategoryTheory.isDetecting_unop_iff
CategoryTheory.isCodetecting_unop_iff
essentiallySmall_op_iff
small_op_iff
isClosedUnderLimitsOfShape_iff_op
instIsClosedUnderLimitsOfShapeUnopOppositeOfIsClosedUnderColimitsOfShape
instSmallUnopOfOpposite_1
essentiallySmall_unop_iff
instIsClosedUnderColimitsOfShapeUnopOppositeOfIsClosedUnderLimitsOfShape
isClosedUnderLimitsOfShape_op_iff_unop
isSeparating_unop_iff
isDetecting_unop_iff
instIsClosedUnderColimitsOfShapeUnopOfIsClosedUnderLimitsOfShapeOpposite
isClosedUnderColimitsOfShape_op_iff_unop
instIsClosedUnderLimitsOfShapeUnopOfIsClosedUnderColimitsOfShapeOpposite
isCoseparating_unop_iff
isCodetecting_unop_iff
isClosedUnderColimitsOfShape_iff_unop
small_unop_iff
instEssentiallySmallUnopOfOpposite
isClosedUnderLimitsOfShape_iff_unop
instContainsZeroUnopOfOpposite
instSmallUnopOfOpposite
IsClosedUnderIsomorphisms
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
prop_of_iso
Opposite.unop
isoClosure
CategoryTheory.ObjectProperty
Pi.hasLe
Prop.le
CategoryTheory.CategoryStruct.opposite
ofObj
Opposite.op
singleton
---
← Back to Index