Documentation Verification Report

Opposite

📁 Source: Mathlib/CategoryTheory/ObjectProperty/Opposite.lean

Statistics

MetricCount
Definitionsop, subtypeOpEquiv, unop
3
TheoremsinstIsClosedUnderIsomorphismsOppositeOp, instIsClosedUnderIsomorphismsUnopOfOpposite, op_iff, op_injective, op_injective_iff, op_isoClosure, op_monotone, op_monotone_iff, op_ofObj, op_singleton, op_unop, unop_iff, unop_injective, unop_injective_iff, unop_isoClosure, unop_monotone, unop_monotone_iff, unop_ofObj, unop_op, unop_singleton
20
Total23

CategoryTheory.ObjectProperty

Definitions

NameCategoryTheorems
op 📖CompOp
43 mathmath: colimitsOfShape_op, isClosedUnderColimitsOfShape_iff_op, CategoryTheory.isSeparating_unop_iff, instIsClosedUnderColimitsOfShapeOppositeOpOfIsClosedUnderLimitsOfShape, isDetecting_op_iff, instContainsZeroOppositeOp, isCoseparating_op_iff, limitsOfShape_op, CategoryTheory.isSeparating_op_iff, op_monotone_iff, instIsClosedUnderIsomorphismsOppositeOp, InheritedFromTarget.op, CategoryTheory.isCoseparating_op_iff, op_singleton, instSmallOppositeOp, instSmallOppositeOp_1, instIsClosedUnderLimitsOfShapeOppositeOpOfIsClosedUnderColimitsOfShape_1, op_iff, op_ofObj, limitsOfShape_eq_unop_colimitsOfShape, op_injective_iff, op_monotone, colimitsClosure_eq_unop_limitsClosure, instIsClosedUnderLimitsOfShapeOppositeOpOfIsClosedUnderColimitsOfShape, CategoryTheory.isCodetecting_op_iff, CategoryTheory.isCoseparating_unop_iff, unop_op, instEssentiallySmallOppositeOp, instIsClosedUnderColimitsOfShapeOppositeOpOfIsClosedUnderLimitsOfShape_1, InheritedFromSource.op, CategoryTheory.isDetecting_op_iff, isClosedUnderColimitsOfShape_op_iff_op, op_isoClosure, isClosedUnderLimitsOfShape_op_iff_op, isCodetecting_op_iff, isSeparating_op_iff, colimitsOfShape_eq_unop_limitsOfShape, CategoryTheory.isDetecting_unop_iff, op_unop, CategoryTheory.isCodetecting_unop_iff, essentiallySmall_op_iff, small_op_iff, isClosedUnderLimitsOfShape_iff_op
subtypeOpEquiv 📖CompOp
unop 📖CompOp
31 mathmath: instIsClosedUnderLimitsOfShapeUnopOppositeOfIsClosedUnderColimitsOfShape, instSmallUnopOfOpposite_1, essentiallySmall_unop_iff, unop_ofObj, unop_injective_iff, instIsClosedUnderColimitsOfShapeUnopOppositeOfIsClosedUnderLimitsOfShape, unop_isoClosure, isClosedUnderLimitsOfShape_op_iff_unop, isSeparating_unop_iff, isDetecting_unop_iff, instIsClosedUnderIsomorphismsUnopOfOpposite, instIsClosedUnderColimitsOfShapeUnopOfIsClosedUnderLimitsOfShapeOpposite, isClosedUnderColimitsOfShape_op_iff_unop, limitsOfShape_eq_unop_colimitsOfShape, colimitsClosure_eq_unop_limitsClosure, unop_monotone_iff, instIsClosedUnderLimitsOfShapeUnopOfIsClosedUnderColimitsOfShapeOpposite, isCoseparating_unop_iff, isCodetecting_unop_iff, unop_op, unop_iff, isClosedUnderColimitsOfShape_iff_unop, colimitsOfShape_eq_unop_limitsOfShape, unop_monotone, op_unop, small_unop_iff, instEssentiallySmallUnopOfOpposite, isClosedUnderLimitsOfShape_iff_unop, instContainsZeroUnopOfOpposite, unop_singleton, instSmallUnopOfOpposite

Theorems

NameKindAssumesProvesValidatesDepends On
instIsClosedUnderIsomorphismsOppositeOp 📖mathematicalIsClosedUnderIsomorphisms
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Category.toCategoryStruct
prop_of_iso
instIsClosedUnderIsomorphismsUnopOfOpposite 📖mathematicalIsClosedUnderIsomorphisms
unop
CategoryTheory.Category.toCategoryStruct
prop_of_iso
op_iff 📖mathematicalop
Opposite.unop
op_injective 📖opunop_op
op_injective_iff 📖mathematicalopop_injective
op_isoClosure 📖mathematicalop
CategoryTheory.Category.toCategoryStruct
isoClosure
Opposite
CategoryTheory.Category.opposite
op_monotone 📖mathematicalCategoryTheory.ObjectProperty
Pi.hasLe
Prop.le
Opposite
CategoryTheory.CategoryStruct.opposite
op
op_monotone_iff 📖mathematicalCategoryTheory.ObjectProperty
Opposite
CategoryTheory.CategoryStruct.opposite
Pi.hasLe
Prop.le
op
unop_monotone
op_monotone
op_ofObj 📖mathematicalop
ofObj
Opposite
CategoryTheory.CategoryStruct.opposite
Opposite.op
op_singleton 📖mathematicalop
singleton
Opposite
CategoryTheory.CategoryStruct.opposite
Opposite.op
op_ofObj
op_unop 📖mathematicalop
unop
unop_iff 📖mathematicalunop
Opposite.op
unop_injective 📖unopop_unop
unop_injective_iff 📖mathematicalunopunop_injective
unop_isoClosure 📖mathematicalunop
CategoryTheory.Category.toCategoryStruct
isoClosure
Opposite
CategoryTheory.Category.opposite
op_injective_iff
op_isoClosure
op_unop
unop_monotone 📖mathematicalCategoryTheory.ObjectProperty
Opposite
CategoryTheory.CategoryStruct.opposite
Pi.hasLe
Prop.le
unop
unop_monotone_iff 📖mathematicalCategoryTheory.ObjectProperty
Pi.hasLe
Prop.le
unop
Opposite
CategoryTheory.CategoryStruct.opposite
op_monotone
unop_monotone
unop_ofObj 📖mathematicalunop
ofObj
Opposite
CategoryTheory.CategoryStruct.opposite
Opposite.unop
op_injective
op_ofObj
unop_op 📖mathematicalunop
op
unop_singleton 📖mathematicalunop
singleton
Opposite
CategoryTheory.CategoryStruct.opposite
Opposite.unop
unop_ofObj

---

← Back to Index