The opposite of a property of objects #
def
CategoryTheory.ObjectProperty.op
{C : Type u}
[CategoryStruct.{v, u} C]
(P : ObjectProperty C)
:
The property of objects of Cแตแต corresponding to P : ObjectProperty C.
Equations
Instances For
def
CategoryTheory.ObjectProperty.unop
{C : Type u}
[CategoryStruct.{v, u} C]
(P : ObjectProperty Cแตแต)
:
The property of objects of C corresponding to P : ObjectProperty Cแตแต.
Equations
Instances For
@[simp]
theorem
CategoryTheory.ObjectProperty.op_iff
{C : Type u}
[CategoryStruct.{v, u} C]
(P : ObjectProperty C)
(X : Cแตแต)
:
@[simp]
theorem
CategoryTheory.ObjectProperty.unop_iff
{C : Type u}
[CategoryStruct.{v, u} C]
(P : ObjectProperty Cแตแต)
(X : C)
:
@[simp]
theorem
CategoryTheory.ObjectProperty.op_unop
{C : Type u}
[CategoryStruct.{v, u} C]
(P : ObjectProperty Cแตแต)
:
@[simp]
theorem
CategoryTheory.ObjectProperty.unop_op
{C : Type u}
[CategoryStruct.{v, u} C]
(P : ObjectProperty C)
:
theorem
CategoryTheory.ObjectProperty.op_injective
{C : Type u}
[CategoryStruct.{v, u} C]
{P Q : ObjectProperty C}
(h : P.op = Q.op)
:
theorem
CategoryTheory.ObjectProperty.unop_injective
{C : Type u}
[CategoryStruct.{v, u} C]
{P Q : ObjectProperty Cแตแต}
(h : P.unop = Q.unop)
:
theorem
CategoryTheory.ObjectProperty.op_injective_iff
{C : Type u}
[CategoryStruct.{v, u} C]
{P Q : ObjectProperty C}
:
theorem
CategoryTheory.ObjectProperty.unop_injective_iff
{C : Type u}
[CategoryStruct.{v, u} C]
{P Q : ObjectProperty Cแตแต}
:
theorem
CategoryTheory.ObjectProperty.op_monotone
{C : Type u}
[CategoryStruct.{v, u} C]
{P Q : ObjectProperty C}
(h : P โค Q)
:
theorem
CategoryTheory.ObjectProperty.unop_monotone
{C : Type u}
[CategoryStruct.{v, u} C]
{P Q : ObjectProperty Cแตแต}
(h : P โค Q)
:
@[simp]
theorem
CategoryTheory.ObjectProperty.op_monotone_iff
{C : Type u}
[CategoryStruct.{v, u} C]
{P Q : ObjectProperty C}
:
@[simp]
theorem
CategoryTheory.ObjectProperty.unop_monotone_iff
{C : Type u}
[CategoryStruct.{v, u} C]
{P Q : ObjectProperty Cแตแต}
:
def
CategoryTheory.ObjectProperty.subtypeOpEquiv
{C : Type u}
[CategoryStruct.{v, u} C]
(P : ObjectProperty C)
:
The bijection Subtype P.op โ Subtype P for P : ObjectProperty C.
Equations
Instances For
@[simp]
theorem
CategoryTheory.ObjectProperty.op_ofObj
{C : Type u}
[CategoryStruct.{v, u} C]
{ฮน : Type u_1}
(X : ฮน โ C)
:
@[simp]
theorem
CategoryTheory.ObjectProperty.unop_ofObj
{C : Type u}
[CategoryStruct.{v, u} C]
{ฮน : Type u_1}
(X : ฮน โ Cแตแต)
:
@[simp]
@[simp]
theorem
CategoryTheory.ObjectProperty.unop_singleton
{C : Type u}
[CategoryStruct.{v, u} C]
(X : Cแตแต)
:
instance
CategoryTheory.ObjectProperty.instIsClosedUnderIsomorphismsOppositeOp
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
[P.IsClosedUnderIsomorphisms]
:
theorem
CategoryTheory.ObjectProperty.op_isoClosure
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
:
theorem
CategoryTheory.ObjectProperty.unop_isoClosure
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty Cแตแต)
: