Documentation Verification Report

SiteLocal

πŸ“ Source: Mathlib/CategoryTheory/ObjectProperty/SiteLocal.lean

Statistics

MetricCount
DefinitionsIsLocal
1
Theoremscomponent, inf, mk_of_zeroHypercover, of_le, of_presieve, toIsClosedUnderIsomorphisms, top, iff_of_presieve, iff_of_zeroHypercover, of_zeroHypercover
10
Total11

CategoryTheory.ObjectProperty

Definitions

NameCategoryTheorems
IsLocal πŸ“–CompData
4 mathmath: IsLocal.inf, IsLocal.mk_of_zeroHypercover, IsLocal.top, IsLocal.of_le

Theorems

NameKindAssumesProvesValidatesDepends On
iff_of_presieve πŸ“–β€”CategoryTheory.Presieve
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
β€”β€”IsLocal.component
IsLocal.of_presieve
iff_of_zeroHypercover πŸ“–mathematicalβ€”CategoryTheory.PreZeroHypercover.X
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
β€”IsLocal.component
CategoryTheory.Precoverage.ZeroHypercover.memβ‚€
of_zeroHypercover
of_zeroHypercover πŸ“–β€”CategoryTheory.PreZeroHypercover.X
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
β€”β€”IsLocal.of_presieve
CategoryTheory.Precoverage.ZeroHypercover.memβ‚€

CategoryTheory.ObjectProperty.IsLocal

Theorems

NameKindAssumesProvesValidatesDepends On
component πŸ“–β€”CategoryTheory.Presieve
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
β€”β€”β€”
inf πŸ“–mathematicalβ€”CategoryTheory.ObjectProperty.IsLocal
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.instMinForall_mathlib
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
Prop.instCompleteLinearOrder
β€”CategoryTheory.ObjectProperty.instIsClosedUnderIsomorphismsMin
toIsClosedUnderIsomorphisms
component
of_presieve
mk_of_zeroHypercover πŸ“–mathematicalCategoryTheory.PreZeroHypercover.X
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
CategoryTheory.ObjectProperty.IsLocalβ€”CategoryTheory.Precoverage.mem_iff_exists_zeroHypercover
of_le πŸ“–mathematicalCategoryTheory.Precoverage
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.Precoverage.instPartialOrder
CategoryTheory.ObjectProperty.IsLocalβ€”toIsClosedUnderIsomorphisms
component
of_presieve
of_presieve πŸ“–β€”CategoryTheory.Presieve
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
β€”β€”β€”
toIsClosedUnderIsomorphisms πŸ“–mathematicalβ€”CategoryTheory.ObjectProperty.IsClosedUnderIsomorphismsβ€”β€”
top πŸ“–mathematicalβ€”CategoryTheory.ObjectProperty.IsLocal
Top.top
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.instTopForall
BooleanAlgebra.toTop
Prop.instBooleanAlgebra
β€”CategoryTheory.ObjectProperty.instIsClosedUnderIsomorphismsTop

---

← Back to Index