Documentation

Mathlib.CategoryTheory.ObjectProperty.SiteLocal

Locality conditions on object properties #

In this file we define locality conditions on object properties in a category. Let K be a precoverage in a category C and P be an object property that is closed under isomorphisms.

We say that

Implementation details #

The covers appearing in the definitions have index type in the morphism universe of C.

An object property is local if it holds for X if and only if it holds for all Uแตข where {Uแตข} is a K-cover of X.

Instances
    theorem CategoryTheory.ObjectProperty.iff_of_presieve {C : Type u} [Category.{v, u} C] {P : ObjectProperty C} {K : Precoverage C} [P.IsLocal K] {X : C} {R : Presieve X} (hR : R โˆˆ K.coverings X) :
    P X โ†” โˆ€ โฆƒY : Cโฆ„ โฆƒf : Y โŸถ Xโฆ„, R f โ†’ P Y
    theorem CategoryTheory.ObjectProperty.IsLocal.mk_of_zeroHypercover {C : Type u} [Category.{v, u} C] {P : ObjectProperty C} {K : Precoverage C} [P.IsClosedUnderIsomorphisms] (H : โˆ€ โฆƒX : Cโฆ„ (๐’ฐ : K.ZeroHypercover X), P X โ†” โˆ€ (i : ๐’ฐ.Iโ‚€), P (๐’ฐ.X i)) :
    theorem CategoryTheory.ObjectProperty.of_zeroHypercover {C : Type u} [Category.{v, u} C] {P : ObjectProperty C} {K : Precoverage C} [P.IsLocal K] {X : C} (๐’ฐ : K.ZeroHypercover X) (h : โˆ€ (i : ๐’ฐ.Iโ‚€), P (๐’ฐ.X i)) :
    P X
    theorem CategoryTheory.ObjectProperty.iff_of_zeroHypercover {C : Type u} [Category.{v, u} C] {P : ObjectProperty C} {K : Precoverage C} [P.IsLocal K] {X : C} (๐’ฐ : K.ZeroHypercover X) :
    P X โ†” โˆ€ (i : ๐’ฐ.Iโ‚€), P (๐’ฐ.X i)