Locality conditions on object properties #
In this file we define locality conditions on object properties in a category. Let K be a
precoverage in a category C and P be an object property that is closed under isomorphisms.
We say that
Pis local if for everyX : C,Pholds forXif and only if it holds forUแตขfor aK-cover{Uแตข}ofX.
Implementation details #
The covers appearing in the definitions have index type in the morphism universe of C.
class
CategoryTheory.ObjectProperty.IsLocal
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
(K : Precoverage C)
extends P.IsClosedUnderIsomorphisms :
An object property is local if it holds for X if and only if it holds for all Uแตข where
{Uแตข} is a K-cover of X.
Instances
theorem
CategoryTheory.ObjectProperty.iff_of_presieve
{C : Type u}
[Category.{v, u} C]
{P : ObjectProperty C}
{K : Precoverage C}
[P.IsLocal K]
{X : C}
{R : Presieve X}
(hR : R โ K.coverings X)
:
theorem
CategoryTheory.ObjectProperty.IsLocal.mk_of_zeroHypercover
{C : Type u}
[Category.{v, u} C]
{P : ObjectProperty C}
{K : Precoverage C}
[P.IsClosedUnderIsomorphisms]
(H : โ โฆX : Cโฆ (๐ฐ : K.ZeroHypercover X), P X โ โ (i : ๐ฐ.Iโ), P (๐ฐ.X i))
:
P.IsLocal K
theorem
CategoryTheory.ObjectProperty.IsLocal.of_le
{C : Type u}
[Category.{v, u} C]
{P : ObjectProperty C}
{K L : Precoverage C}
[P.IsLocal L]
(hle : K โค L)
:
P.IsLocal K
instance
CategoryTheory.ObjectProperty.IsLocal.top
{C : Type u}
[Category.{v, u} C]
{K : Precoverage C}
:
instance
CategoryTheory.ObjectProperty.IsLocal.inf
{C : Type u}
[Category.{v, u} C]
{K : Precoverage C}
(P Q : ObjectProperty C)
[P.IsLocal K]
[Q.IsLocal K]
:
(P โ Q).IsLocal K
theorem
CategoryTheory.ObjectProperty.of_zeroHypercover
{C : Type u}
[Category.{v, u} C]
{P : ObjectProperty C}
{K : Precoverage C}
[P.IsLocal K]
{X : C}
(๐ฐ : K.ZeroHypercover X)
(h : โ (i : ๐ฐ.Iโ), P (๐ฐ.X i))
:
P X
theorem
CategoryTheory.ObjectProperty.iff_of_zeroHypercover
{C : Type u}
[Category.{v, u} C]
{P : ObjectProperty C}
{K : Precoverage C}
[P.IsLocal K]
{X : C}
(๐ฐ : K.ZeroHypercover X)
: