Documentation

Mathlib.CategoryTheory.Sites.Precoverage

Precoverages #

A precoverage K on a category C is a set of presieves associated to every object X : C, called "covering presieves". There are no conditions on this set. Common extensions of a precoverage are:

These two are defined in later files. For precoverages, we define stability conditions:

structure CategoryTheory.Precoverage (C : Type u_1) [Category.{v_1, u_1} C] :
Type (max u_1 v_1)

A precoverage is a collection of covering presieves on every object X : C. See CategoryTheory.Coverage and CategoryTheory.Pretopology for common extensions of this.

  • coverings (X : C) : Set (Presieve X)

    The collection of covering presieves for an object X.

Instances For
    theorem CategoryTheory.Precoverage.ext {C : Type u_1} {inst✝ : Category.{v_1, u_1} C} {x y : Precoverage C} (coverings : x.coverings = y.coverings) :
    x = y

    A precoverage has isomorphisms if singleton presieves by isomorphisms are covering.

    Instances

      A precoverage is stable under base change if pullbacks of covering presieves are covering presieves. Use Precoverage.mem_coverings_of_isPullback for less universe restrictions. Note: This is stronger than the analogous requirement for a Pretopology, because IsPullback does not imply equality with the (arbitrarily) chosen pullbacks in C.

      Instances

        A precoverage is stable under composition if the indexed composition of coverings is again a covering. Use Precoverage.comp_mem_coverings for less universe restrictions. Note: This is stronger than the analogous requirement for a Pretopology, because this is in general not equal to a Presieve.bind.

        Instances

          A precoverage is stable under βŠ” if whenever R and S are coverings, also R βŠ” S is a covering.

          Instances

            A precoverage has pullbacks, if every covering presieve has pullbacks along arbitrary morphisms.

            Instances
              theorem CategoryTheory.Precoverage.mem_coverings_of_isPullback {C : Type u} [Category.{v, u} C] {J : Precoverage C} [J.IsStableUnderBaseChange] {ΞΉ : Type w} {S : C} {X : ΞΉ β†’ C} (f : (i : ΞΉ) β†’ X i ⟢ S) (hR : Presieve.ofArrows X f ∈ J.coverings S) {Y : C} (g : Y ⟢ S) {P : ΞΉ β†’ C} (p₁ : (i : ΞΉ) β†’ P i ⟢ Y) (pβ‚‚ : (i : ΞΉ) β†’ P i ⟢ X i) (h : βˆ€ (i : ΞΉ), IsPullback (p₁ i) (pβ‚‚ i) g (f i)) :
              theorem CategoryTheory.Precoverage.comp_mem_coverings {C : Type u} [Category.{v, u} C] {J : Precoverage C} [J.IsStableUnderComposition] {ΞΉ : Type w} {S : C} {X : ΞΉ β†’ C} (f : (i : ΞΉ) β†’ X i ⟢ S) (hf : Presieve.ofArrows X f ∈ J.coverings S) {Οƒ : ΞΉ β†’ Type w'} {Y : (i : ΞΉ) β†’ Οƒ i β†’ C} (g : (i : ΞΉ) β†’ (j : Οƒ i) β†’ Y i j ⟢ X i) (hg : βˆ€ (i : ΞΉ), Presieve.ofArrows (Y i) (g i) ∈ J.coverings (X i)) :
              (Presieve.ofArrows (fun (p : (i : ΞΉ) Γ— Οƒ i) => Y p.fst p.snd) fun (x : (i : ΞΉ) Γ— Οƒ i) => CategoryStruct.comp (g x.fst x.snd) (f x.fst)) ∈ J.coverings S

              If J is a precoverage on D, we obtain a precoverage on C by declaring a presieve on D to be covering if its image under F is.

              Equations
                Instances For
                  theorem CategoryTheory.Precoverage.comap_inf {C : Type u} [Category.{v, u} C] {D : Type u_1} [Category.{v_1, u_1} D] {F : Functor C D} {J K : Precoverage D} :
                  comap F (J βŠ“ K) = comap F J βŠ“ comap F K

                  A functor F preserves pairwise pullbacks of a presieve R if for every pair of morphisms f and g in R, the pullback of f and g is preserved by F.

                  Instances
                    theorem CategoryTheory.Functor.preservesLimit_cospan_of_mem_presieve {C : Type u_1} {D : Type u_2} {inst✝ : Category.{v_1, u_1} C} {inst✝¹ : Category.{v_2, u_2} D} {F : Functor C D} {X : C} (R : Presieve X) [self : F.PreservesPairwisePullbacks R] ⦃Y Z : C⦄ ⦃f : Y ⟢ X⦄ ⦃g : Z ⟢ X⦄ :
                    R f β†’ R g β†’ Limits.PreservesLimit (Limits.cospan f g) F

                    Alias of CategoryTheory.Functor.PreservesPairwisePullbacks.preservesLimit.

                    Pullbacks are preserved by a functor F : C β₯€ D for the precoverage J on C if F preserves all pairwise pullbacks of presieves in J.

                    Instances