Precoverages #
A precoverage K on a category C is a set of presieves associated to every object X : C,
called "covering presieves".
There are no conditions on this set. Common extensions of a precoverage are:
CategoryTheory.Coverage: A coverage is a precoverage that satisfies a pullback compatibility condition, saying that wheneverSis a covering presieve onXandf : Y βΆ Xis a morphism, then there exists some covering sieveTonYsuch thatTfactors throughSalongf.CategoryTheory.Pretopology: IfChas pullbacks, a pretopology onCis a precoverage that has isomorphisms and is stable under pullback and refinement.
These two are defined in later files. For precoverages, we define stability conditions:
CategoryTheory.Precoverage.HasIsos: Singleton presieves by isomorphisms are covering.CategoryTheory.Precoverage.IsStableUnderBaseChange: The pullback of a covering presieve is again covering.CategoryTheory.Precoverage.IsStableUnderComposition: Refining a covering presieve by covering presieves yields a covering presieve.
A precoverage is a collection of covering presieves on every object X : C.
See CategoryTheory.Coverage and CategoryTheory.Pretopology for common extensions of this.
The collection of covering presieves for an object
X.
Instances For
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
A precoverage has isomorphisms if singleton presieves by isomorphisms are covering.
Instances
A precoverage is stable under base change if pullbacks of covering presieves
are covering presieves.
Use Precoverage.mem_coverings_of_isPullback for less universe restrictions.
Note: This is stronger than the analogous requirement for a Pretopology, because
IsPullback does not imply equality with the (arbitrarily) chosen pullbacks in C.
- mem_coverings_of_isPullback {ΞΉ : Type (max u v)} {S : C} {X : ΞΉ β C} (f : (i : ΞΉ) β X i βΆ S) (hR : Presieve.ofArrows X f β J.coverings S) {Y : C} (g : Y βΆ S) {P : ΞΉ β C} (pβ : (i : ΞΉ) β P i βΆ Y) (pβ : (i : ΞΉ) β P i βΆ X i) (h : β (i : ΞΉ), IsPullback (pβ i) (pβ i) g (f i)) : Presieve.ofArrows P pβ β J.coverings Y
Instances
A precoverage is stable under composition if the indexed composition
of coverings is again a covering.
Use Precoverage.comp_mem_coverings for less universe restrictions.
Note: This is stronger than the analogous requirement for a Pretopology, because
this is in general not equal to a Presieve.bind.
- comp_mem_coverings {ΞΉ : Type (max u v)} {S : C} {X : ΞΉ β C} (f : (i : ΞΉ) β X i βΆ S) (hf : Presieve.ofArrows X f β J.coverings S) {Ο : ΞΉ β Type (max u v)} {Y : (i : ΞΉ) β Ο i β C} (g : (i : ΞΉ) β (j : Ο i) β Y i j βΆ X i) (hg : β (i : ΞΉ), Presieve.ofArrows (Y i) (g i) β J.coverings (X i)) : (Presieve.ofArrows (fun (p : (i : ΞΉ) Γ Ο i) => Y p.fst p.snd) fun (x : (i : ΞΉ) Γ Ο i) => CategoryStruct.comp (g x.fst x.snd) (f x.fst)) β J.coverings S
Instances
A precoverage is stable under β if whenever R and S are coverings,
also R β S is a covering.
Instances
A precoverage has pullbacks, if every covering presieve has pullbacks along arbitrary morphisms.
- hasPullbacks_of_mem {X Y : C} {R : Presieve Y} (f : X βΆ Y) (hR : R β J.coverings Y) : R.HasPullbacks f
Instances
Alias of CategoryTheory.Precoverage.HasIsos.mem_coverings_of_isIso.
Alias of CategoryTheory.Precoverage.IsStableUnderSup.sup_mem_coverings.
Alias of CategoryTheory.Precoverage.HasPullbacks.hasPullbacks_of_mem.
If J is a precoverage on D, we obtain a precoverage on C by declaring a presieve on D
to be covering if its image under F is.
Equations
Instances For
A functor F preserves pairwise pullbacks of a presieve R if for every pair
of morphisms f and g in R, the pullback of f and g is preserved by F.
- preservesLimit β¦Y Z : Cβ¦ β¦f : Y βΆ Xβ¦ β¦g : Z βΆ Xβ¦ : R f β R g β Limits.PreservesLimit (Limits.cospan f g) F
Instances
Alias of CategoryTheory.Functor.PreservesPairwisePullbacks.preservesLimit.
Pullbacks are preserved by a functor F : C β₯€ D for the precoverage J on C if
F preserves all pairwise pullbacks of presieves in J.
- preservesPairwisePullbacks_of_mem β¦X : Cβ¦ β¦R : Presieve Xβ¦ : R β J.coverings X β F.PreservesPairwisePullbacks R
Instances
Alias of CategoryTheory.Precoverage.PullbacksPreservedBy.preservesPairwisePullbacks_of_mem.