Documentation Verification Report

Precoverage

πŸ“ Source: Mathlib/CategoryTheory/Sites/Precoverage.lean

Statistics

MetricCount
DefinitionsPreservesPairwisePullbacks, Precoverage, HasIsos, HasPullbacks, IsStableUnderBaseChange, IsStableUnderComposition, IsStableUnderSup, PullbacksPreservedBy, comap, coverings, instBot, instCoeFunForallSetPresieve, instCompleteLattice, instInfSet, instMax, instMin, instPartialOrder, instSupSet, instTop
19
TheoremspreservesLimit, preservesLimit_cospan_of_mem_presieve, mem_coverings_of_isIso, hasPullbacks_of_mem, mem_coverings_of_isPullback, comp_mem_coverings, sup_mem_coverings, preservesPairwisePullbacks_of_mem, comap_comp, comap_id, comap_inf, comp_mem_coverings, ext, ext_iff, hasPairwisePullbacks_of_mem, hasPullbacks_of_mem, instHasIsosComap, instHasIsosMin, instHasPullbacksComapOfCreatesLimitsOfShapeWalkingCospan, instHasPullbacksOfHasPullbacks, instIsStableUnderBaseChangeComapOfPreservesLimitsOfShapeWalkingCospan, instIsStableUnderBaseChangeMin, instIsStableUnderCompositionComap, instIsStableUnderCompositionMin, instIsStableUnderSupMin, instPullbacksPreservedByOfPreservesLimitsOfShapeWalkingCospan, mem_comap_iff, mem_coverings_of_isIso, mem_coverings_of_isPullback, preservesPairwisePullbacks_of_mem, pullbackArrows_mem, sup_mem_coverings, map_of_preservesPairwisePullbacks, instPreservesPairwisePullbacksOfPreservesLimitsOfShapeWalkingCospan
34
Total53

CategoryTheory

Definitions

NameCategoryTheorems
Precoverage πŸ“–CompData
13 mathmath: Precoverage.instHasIsosMin, Precoverage.toGrothendieck_le_iff_le_toPrecoverage, AlgebraicGeometry.Scheme.precoverage_mono, MorphismProperty.precoverage_monotone, Precoverage.instIsStableUnderSupMin, Precoverage.instIsStableUnderBaseChangeMin, Precoverage.instIsStableUnderCompositionMin, Precoverage.Small.inf, AlgebraicGeometry.Scheme.precoverage_le_qcPrecoverage_of_isOpenMap, MorphismProperty.precoverage_inf, Precoverage.le_of_zeroHypercover, AlgebraicGeometry.Scheme.zariskiPrecoverage_le_qcPrecoverage, Precoverage.comap_inf

Theorems

NameKindAssumesProvesValidatesDepends On
instPreservesPairwisePullbacksOfPreservesLimitsOfShapeWalkingCospan πŸ“–mathematicalβ€”Functor.PreservesPairwisePullbacksβ€”Limits.PreservesLimitsOfShape.preservesLimit

CategoryTheory.Functor

Definitions

NameCategoryTheorems
PreservesPairwisePullbacks πŸ“–CompData
3 mathmath: CategoryTheory.Precoverage.PullbacksPreservedBy.preservesPairwisePullbacks_of_mem, CategoryTheory.Precoverage.preservesPairwisePullbacks_of_mem, CategoryTheory.instPreservesPairwisePullbacksOfPreservesLimitsOfShapeWalkingCospan

Theorems

NameKindAssumesProvesValidatesDepends On
preservesLimit_cospan_of_mem_presieve πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
β€”PreservesPairwisePullbacks.preservesLimit

CategoryTheory.Functor.PreservesPairwisePullbacks

Theorems

NameKindAssumesProvesValidatesDepends On
preservesLimit πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
β€”β€”

CategoryTheory.Precoverage

Definitions

NameCategoryTheorems
HasIsos πŸ“–CompData
9 mathmath: instHasIsosMin, CategoryTheory.MorphismProperty.instHasIsosPrecoverageOfContainsIdentitiesOfRespectsIso, CategoryTheory.GrothendieckTopology.instHasIsosToPrecoverage, AlgebraicGeometry.Scheme.instHasIsosPrecoverageOfContainsIdentitiesOfRespectsIso, HasIsos.of_preZeroHypercoverFamily, instHasIsosComap, instHasIsosFinite, AlgebraicGeometry.Scheme.instHasIsosQcPrecoverage, CategoryTheory.Types.instHasIsosJointlySurjectivePrecoverage
HasPullbacks πŸ“–CompData
3 mathmath: AlgebraicGeometry.Scheme.instHasPullbacksPrecoverageOfHasPullbacks, instHasPullbacksOfHasPullbacks, instHasPullbacksComapOfCreatesLimitsOfShapeWalkingCospan
IsStableUnderBaseChange πŸ“–CompData
10 mathmath: CategoryTheory.isStableUnderBaseChange_comap_jointlySurjectivePrecoverage, CategoryTheory.GrothendieckTopology.instIsStableUnderBaseChangeToPrecoverage, instIsStableUnderBaseChangeComapOfPreservesLimitsOfShapeWalkingCospan, CategoryTheory.MorphismProperty.instIsStableUnderBaseChangePrecoverageOfIsStableUnderBaseChange, instIsStableUnderBaseChangeMin, AlgebraicGeometry.Scheme.instIsStableUnderBaseChangeJointlySurjectivePrecoverage, CategoryTheory.instIsStableUnderBaseChangeJointlySurjectivePrecoverage, AlgebraicGeometry.Scheme.instIsStableUnderBaseChangePrecoverageOfIsJointlySurjectivePreservingOfIsStableUnderBaseChange, IsStableUnderBaseChange.of_preZeroHypercoverFamily_of_isClosedUnderIsomorphisms, AlgebraicGeometry.Scheme.instIsStableUnderBaseChangeQcPrecoverage
IsStableUnderComposition πŸ“–CompData
8 mathmath: AlgebraicGeometry.Scheme.instIsStableUnderCompositionQcPrecoverage, CategoryTheory.GrothendieckTopology.instIsStableUnderCompositionToPrecoverage, instIsStableUnderCompositionComap, instIsStableUnderCompositionMin, AlgebraicGeometry.Scheme.instIsStableUnderCompositionPrecoverageOfIsStableUnderComposition, CategoryTheory.Types.instIsStableUnderCompositionJointlySurjectivePrecoverage, IsStableUnderComposition.of_preZeroHypercoverFamily, CategoryTheory.MorphismProperty.instIsStableUnderCompositionPrecoverageOfIsStableUnderComposition
IsStableUnderSup πŸ“–CompData
4 mathmath: instIsStableUnderSupMin, IsStableUnderSup.of_preZeroHypercoverFamily, AlgebraicGeometry.Scheme.instIsStableUnderSupQcPrecoverage, CategoryTheory.Types.instIsStableUnderSupJointlySurjectivePrecoverage
PullbacksPreservedBy πŸ“–CompData
1 mathmath: instPullbacksPreservedByOfPreservesLimitsOfShapeWalkingCospan
comap πŸ“–CompOp
14 mathmath: CategoryTheory.isStableUnderBaseChange_comap_jointlySurjectivePrecoverage, CategoryTheory.Presieve.ofArrows_mem_comap_jointlySurjectivePrecoverage_iff, instIsStableUnderBaseChangeComapOfPreservesLimitsOfShapeWalkingCospan, CategoryTheory.MorphismProperty.comap_precoverage, instIsStableUnderCompositionComap, instHasIsosComap, CategoryTheory.Presieve.mem_comap_jointlySurjectivePrecoverage_iff, instSmallComap, CategoryTheory.over_toGrothendieck_eq_toGrothendieck_comap_forget, comap_inf, comap_id, instHasPullbacksComapOfCreatesLimitsOfShapeWalkingCospan, mem_comap_iff, comap_comp
coverings πŸ“–CompOp
47 mathmath: CategoryTheory.GrothendieckTopology.mem_toPretopology, ZeroHypercover.Small.exists_restrictIndex_mem, CategoryTheory.Coverage.ext_iff, CategoryTheory.Types.mem_jointlySurjectivePrecoverage_iff, CategoryTheory.MorphismProperty.ofArrows_mem_precoverage, AlgebraicGeometry.Scheme.mem_jointlySurjectiveTopology_iff_jointlySurjectivePretopology, AlgebraicGeometry.Scheme.bot_mem_precoverage, CategoryTheory.Presieve.ofArrows_mem_comap_jointlySurjectivePrecoverage_iff, AlgebraicGeometry.Scheme.presieveβ‚€_mem_precoverage_iff, preZeroHypercoverFamily_property, CategoryTheory.Pretopology.mem_toGrothendieck, CategoryTheory.PreZeroHypercover.presieveβ‚€_mem_iff_of_iso, mem_coverings_of_isIso, mem_finite_iff, CategoryTheory.Pretopology.ext_iff, CategoryTheory.MorphismProperty.bot_mem_precoverage, AlgebraicGeometry.Scheme.singleton_mem_precoverage_iff, AlgebraicGeometry.Scheme.presieveβ‚€_mem_qcPrecoverage_iff, HasIsos.mem_coverings_of_isIso, CategoryTheory.Types.singleton_mem_jointlySurjectivePrecoverage_iff, mem_toGrothendieck_iff_of_isStableUnderComposition, mem_iff_exists_zeroHypercover, ZeroHypercover.presieveβ‚€_mem_of_iso, CategoryTheory.ofGrothendieck_iff, ext_iff, ofArrows_mem_finite, CategoryTheory.Pretopology.has_isos, ZeroHypercover.Small.memβ‚€, CategoryTheory.PreZeroHypercoverFamily.mem_precoverage_iff, CategoryTheory.Pretopology.mem_inf, CategoryTheory.GrothendieckTopology.mem_toPrecoverage_iff, AlgebraicGeometry.Scheme.ofArrows_mem_precoverage_iff, CategoryTheory.Presieve.mem_comap_jointlySurjectivePrecoverage_iff, CategoryTheory.Pretopology.ofArrows_mem_finite, CategoryTheory.Pretopology.mem_sInf, ZeroHypercover.memβ‚€, CategoryTheory.Pretopology.mem_toCoverage, CategoryTheory.Coverage.sup_covering, AlgebraicGeometry.Scheme.mem_pretopology_iff, AlgebraicGeometry.Scheme.Cover.mem_pretopology, CategoryTheory.PreZeroHypercover.presieveβ‚€_mem_precoverage_iff, CategoryTheory.Pretopology.mem_ofGrothendieck, CategoryTheory.Pretopology.le_def, CategoryTheory.GrothendieckTopology.mem_toCoverage_iff, AlgebraicGeometry.Scheme.pretopology_cover, CategoryTheory.Types.ofArrows_mem_jointlySurjectivePrecoverage_iff, mem_comap_iff
instBot πŸ“–CompOpβ€”
instCoeFunForallSetPresieve πŸ“–CompOpβ€”
instCompleteLattice πŸ“–CompOpβ€”
instInfSet πŸ“–CompOpβ€”
instMax πŸ“–CompOpβ€”
instMin πŸ“–CompOp
7 mathmath: instHasIsosMin, instIsStableUnderSupMin, instIsStableUnderBaseChangeMin, instIsStableUnderCompositionMin, Small.inf, CategoryTheory.MorphismProperty.precoverage_inf, comap_inf
instPartialOrder πŸ“–CompOp
6 mathmath: toGrothendieck_le_iff_le_toPrecoverage, AlgebraicGeometry.Scheme.precoverage_mono, CategoryTheory.MorphismProperty.precoverage_monotone, AlgebraicGeometry.Scheme.precoverage_le_qcPrecoverage_of_isOpenMap, le_of_zeroHypercover, AlgebraicGeometry.Scheme.zariskiPrecoverage_le_qcPrecoverage
instSupSet πŸ“–CompOpβ€”
instTop πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
comap_comp πŸ“–mathematicalβ€”comap
CategoryTheory.Functor.comp
β€”ext
Set.ext
CategoryTheory.Presieve.exists_eq_ofArrows
CategoryTheory.Presieve.map_ofArrows
comap_id πŸ“–mathematicalβ€”comap
CategoryTheory.Functor.id
β€”ext
Set.ext
CategoryTheory.Presieve.map_id
comap_inf πŸ“–mathematicalβ€”comap
CategoryTheory.Precoverage
instMin
β€”β€”
comp_mem_coverings πŸ“–mathematicalCategoryTheory.Presieve
Set
Set.instMembership
coverings
CategoryTheory.Presieve.ofArrows
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”le_antisymm
CategoryTheory.Presieve.ofArrows.mk'
CategoryTheory.Presieve.ofArrows.obj_idx
CategoryTheory.Presieve.ofArrows.eq_eqToHom_comp_hom_idx
IsStableUnderComposition.comp_mem_coverings
CategoryTheory.Presieve.ofArrows.hom_idx
CategoryTheory.eqToHom_trans_assoc
CategoryTheory.Category.id_comp
ext πŸ“–β€”coveringsβ€”β€”β€”
ext_iff πŸ“–mathematicalβ€”coveringsβ€”ext
hasPairwisePullbacks_of_mem πŸ“–mathematicalCategoryTheory.Presieve
Set
Set.instMembership
coverings
CategoryTheory.Presieve.HasPairwisePullbacksβ€”CategoryTheory.Presieve.HasPullbacks.hasPullback
hasPullbacks_of_mem
hasPullbacks_of_mem πŸ“–mathematicalCategoryTheory.Presieve
Set
Set.instMembership
coverings
CategoryTheory.Presieve.HasPullbacksβ€”HasPullbacks.hasPullbacks_of_mem
instHasIsosComap πŸ“–mathematicalβ€”HasIsos
comap
β€”CategoryTheory.Presieve.map_singleton
mem_coverings_of_isIso
CategoryTheory.Functor.map_isIso
instHasIsosMin πŸ“–mathematicalβ€”HasIsos
CategoryTheory.Precoverage
instMin
β€”mem_coverings_of_isIso
instHasPullbacksComapOfCreatesLimitsOfShapeWalkingCospan πŸ“–mathematicalβ€”HasPullbacks
comap
β€”hasPullbacks_of_mem
CategoryTheory.Presieve.hasPullback
CategoryTheory.Presieve.map_map
CategoryTheory.Limits.HasPullback.of_createsLimit
instHasPullbacksOfHasPullbacks πŸ“–mathematicalβ€”HasPullbacksβ€”CategoryTheory.Presieve.instHasPullbacksOfHasPullbacks
instIsStableUnderBaseChangeComapOfPreservesLimitsOfShapeWalkingCospan πŸ“–mathematicalβ€”IsStableUnderBaseChange
comap
β€”CategoryTheory.Presieve.map_ofArrows
mem_coverings_of_isPullback
CategoryTheory.Functor.map_isPullback
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
instIsStableUnderBaseChangeMin πŸ“–mathematicalβ€”IsStableUnderBaseChange
CategoryTheory.Precoverage
instMin
β€”mem_coverings_of_isPullback
instIsStableUnderCompositionComap πŸ“–mathematicalβ€”IsStableUnderComposition
comap
β€”CategoryTheory.Presieve.map_ofArrows
CategoryTheory.Functor.map_comp
comp_mem_coverings
instIsStableUnderCompositionMin πŸ“–mathematicalβ€”IsStableUnderComposition
CategoryTheory.Precoverage
instMin
β€”comp_mem_coverings
instIsStableUnderSupMin πŸ“–mathematicalβ€”IsStableUnderSup
CategoryTheory.Precoverage
instMin
β€”sup_mem_coverings
instPullbacksPreservedByOfPreservesLimitsOfShapeWalkingCospan πŸ“–mathematicalβ€”PullbacksPreservedByβ€”CategoryTheory.instPreservesPairwisePullbacksOfPreservesLimitsOfShapeWalkingCospan
mem_comap_iff πŸ“–mathematicalβ€”CategoryTheory.Presieve
Set
Set.instMembership
coverings
comap
CategoryTheory.Functor.obj
CategoryTheory.Presieve.map
β€”β€”
mem_coverings_of_isIso πŸ“–mathematicalβ€”CategoryTheory.Presieve
Set
Set.instMembership
coverings
CategoryTheory.Presieve.singleton
β€”HasIsos.mem_coverings_of_isIso
mem_coverings_of_isPullback πŸ“–β€”CategoryTheory.Presieve
Set
Set.instMembership
coverings
CategoryTheory.Presieve.ofArrows
CategoryTheory.IsPullback
β€”β€”le_antisymm
CategoryTheory.Presieve.ofArrows.mk'
CategoryTheory.Presieve.ofArrows.obj_idx
CategoryTheory.Presieve.ofArrows.hom_idx
CategoryTheory.eqToHom_trans_assoc
CategoryTheory.Category.id_comp
IsStableUnderBaseChange.mem_coverings_of_isPullback
preservesPairwisePullbacks_of_mem πŸ“–mathematicalCategoryTheory.Presieve
Set
Set.instMembership
coverings
CategoryTheory.Functor.PreservesPairwisePullbacksβ€”PullbacksPreservedBy.preservesPairwisePullbacks_of_mem
pullbackArrows_mem πŸ“–mathematicalCategoryTheory.Presieve
Set
Set.instMembership
coverings
CategoryTheory.Presieve.pullbackArrowsβ€”CategoryTheory.Presieve.exists_eq_ofArrows
CategoryTheory.Presieve.hasPullback
CategoryTheory.Presieve.instHasPullbacksOfArrowsOfHasPullback
CategoryTheory.Presieve.ofArrows_pullback
mem_coverings_of_isPullback
CategoryTheory.IsPullback.flip
CategoryTheory.IsPullback.of_hasPullback
sup_mem_coverings πŸ“–mathematicalCategoryTheory.Presieve
Set
Set.instMembership
coverings
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.instCompleteLatticePresieve
β€”IsStableUnderSup.sup_mem_coverings

CategoryTheory.Precoverage.HasIsos

Theorems

NameKindAssumesProvesValidatesDepends On
mem_coverings_of_isIso πŸ“–mathematicalβ€”CategoryTheory.Presieve
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
CategoryTheory.Presieve.singleton
β€”β€”

CategoryTheory.Precoverage.HasPullbacks

Theorems

NameKindAssumesProvesValidatesDepends On
hasPullbacks_of_mem πŸ“–mathematicalCategoryTheory.Presieve
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
CategoryTheory.Presieve.HasPullbacksβ€”β€”

CategoryTheory.Precoverage.IsStableUnderBaseChange

Theorems

NameKindAssumesProvesValidatesDepends On
mem_coverings_of_isPullback πŸ“–β€”CategoryTheory.Presieve
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
CategoryTheory.Presieve.ofArrows
CategoryTheory.IsPullback
β€”β€”β€”

CategoryTheory.Precoverage.IsStableUnderComposition

Theorems

NameKindAssumesProvesValidatesDepends On
comp_mem_coverings πŸ“–mathematicalCategoryTheory.Presieve
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
CategoryTheory.Presieve.ofArrows
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”β€”

CategoryTheory.Precoverage.IsStableUnderSup

Theorems

NameKindAssumesProvesValidatesDepends On
sup_mem_coverings πŸ“–mathematicalCategoryTheory.Presieve
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.instCompleteLatticePresieve
β€”β€”

CategoryTheory.Precoverage.PullbacksPreservedBy

Theorems

NameKindAssumesProvesValidatesDepends On
preservesPairwisePullbacks_of_mem πŸ“–mathematicalCategoryTheory.Presieve
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
CategoryTheory.Functor.PreservesPairwisePullbacksβ€”β€”

CategoryTheory.Presieve.HasPairwisePullbacks

Theorems

NameKindAssumesProvesValidatesDepends On
map_of_preservesPairwisePullbacks πŸ“–mathematicalβ€”CategoryTheory.Presieve.HasPairwisePullbacks
CategoryTheory.Functor.obj
CategoryTheory.Presieve.map
β€”has_pullbacks
CategoryTheory.Functor.preservesLimit_cospan_of_mem_presieve
CategoryTheory.Limits.hasPullback_of_preservesPullback

---

← Back to Index