Documentation Verification Report

Small

πŸ“ Source: Mathlib/CategoryTheory/ObjectProperty/Small.lean

Statistics

MetricCount
DefinitionsSmall
1
Theoremsexists_small, exists_small_le, exists_small_le', of_le, of_le, essentiallySmall_op_iff, essentiallySmall_unop_iff, exists_equivalence_iff, instEssentiallySmallFullSubcategoryOfLocallySmallOfEssentiallySmall, instEssentiallySmallFullSubcategoryOfLocallySmallOfEssentiallySmall_1, instEssentiallySmallISupOfSmall, instEssentiallySmallIsoClosure, instEssentiallySmallMap, instEssentiallySmallMax, instEssentiallySmallOfSmall, instEssentiallySmallOppositeOp, instEssentiallySmallTopOfEssentiallySmall, instEssentiallySmallUnopOfOpposite, instSmallFullSubcategoryOfSmall, instSmallISupOfSmall, instSmallMax, instSmallMin, instSmallMin_1, instSmallOfObjOfSmall, instSmallOppositeOp, instSmallOppositeOp_1, instSmallPair, instSmallStrictMap, instSmallUnopOfOpposite, instSmallUnopOfOpposite_1, small_op_iff, small_unop_iff, exists_equivalence_iff_of_locallySmall
33
Total34

CategoryTheory

Theorems

NameKindAssumesProvesValidatesDepends On
exists_equivalence_iff_of_locallySmall πŸ“–mathematicalβ€”Equivalence
ObjectProperty.EssentiallySmall
Top.top
ObjectProperty
Category.toCategoryStruct
Pi.instTopForall
BooleanAlgebra.toTop
Prop.instBooleanAlgebra
β€”ObjectProperty.exists_equivalence_iff

CategoryTheory.ObjectProperty

Definitions

NameCategoryTheorems
Small πŸ“–MathDef
21 mathmath: instSmallUnopOfOpposite_1, CategoryTheory.CostructuredArrow.small_proj_preimage_of_locallySmall, Small.of_le, instSmallOppositeOp, CategoryTheory.StructuredArrow.small_inverseImage_proj_of_locallySmall, instSmallMin, instSmallOppositeOp_1, PresheafOfModules.freeYoneda.instSmall, instSmallOfObjOfSmall, instSmallPair, instSmallStrictColimitsOfShapeOfSmallOfLocallySmall, instSmallStrictLimitsOfShapeOfSmallOfLocallySmall, instSmallMax, instSmallMin_1, small_unop_iff, instSmallStrictLimitsClosureIterOfLocallySmallOfSmallElemIio, instSmallStrictMap, small_op_iff, CategoryTheory.CostructuredArrow.small_inverseImage_proj_of_locallySmall, instSmallUnopOfOpposite, CategoryTheory.StructuredArrow.small_proj_preimage_of_locallySmall

Theorems

NameKindAssumesProvesValidatesDepends On
essentiallySmall_op_iff πŸ“–mathematicalβ€”EssentiallySmall
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Category.toCategoryStruct
β€”EssentiallySmall.exists_small_le
instSmallUnopOfOpposite_1
unop_isoClosure
op_monotone_iff
op_unop
instSmallOppositeOp_1
op_isoClosure
essentiallySmall_unop_iff πŸ“–mathematicalβ€”EssentiallySmall
unop
CategoryTheory.Category.toCategoryStruct
Opposite
CategoryTheory.Category.opposite
β€”essentiallySmall_op_iff
op_unop
exists_equivalence_iff πŸ“–mathematicalβ€”CategoryTheory.Equivalence
FullSubcategory
FullSubcategory.category
EssentiallySmall
β€”instSmallOfObjOfSmall
UnivLE.small
UnivLE.self
EssentiallySmall.exists_small_le
instSmallFullSubcategoryOfSmall
CategoryTheory.Shrink.instLocallySmallShrink
CategoryTheory.locallySmall_fullSubcategory
isEquivalence_ΞΉOfLE_iff
instEssentiallySmallFullSubcategoryOfLocallySmallOfEssentiallySmall πŸ“–mathematicalβ€”CategoryTheory.EssentiallySmall
FullSubcategory
FullSubcategory.category
β€”EssentiallySmall.exists_small_le
isEquivalence_ΞΉOfLE_iff
CategoryTheory.essentiallySmall_congr
CategoryTheory.essentiallySmall_of_small_of_locallySmall
instSmallFullSubcategoryOfSmall
CategoryTheory.locallySmall_fullSubcategory
instEssentiallySmallFullSubcategoryOfLocallySmallOfEssentiallySmall_1 πŸ“–mathematicalβ€”CategoryTheory.EssentiallySmall
FullSubcategory
FullSubcategory.category
β€”EssentiallySmall.exists_small_le
isEquivalence_ΞΉOfLE_iff
CategoryTheory.essentiallySmall_congr
CategoryTheory.essentiallySmall_of_small_of_locallySmall
instSmallFullSubcategoryOfSmall
CategoryTheory.locallySmall_fullSubcategory
instEssentiallySmallISupOfSmall πŸ“–mathematicalEssentiallySmalliSup
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.supSet
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
Prop.instCompleteLattice
β€”EssentiallySmall.exists_small_le'
instSmallISupOfSmall
LE.le.trans
monotone_isoClosure
le_iSup
instEssentiallySmallIsoClosure πŸ“–mathematicalβ€”EssentiallySmall
isoClosure
β€”EssentiallySmall.exists_small_le
isoClosure_le_iff
instIsClosedUnderIsomorphismsIsoClosure
instEssentiallySmallMap πŸ“–mathematicalβ€”EssentiallySmall
map
β€”EssentiallySmall.exists_small_le
instSmallStrictMap
LE.le.trans
map_monotone
map_isoClosure
isoClosure_strictMap
instEssentiallySmallMax πŸ“–mathematicalβ€”EssentiallySmall
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.instMaxForall_mathlib
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Prop.instCompleteLattice
β€”EssentiallySmall.exists_small_le'
instSmallMax
LE.le.trans
monotone_isoClosure
le_sup_left
le_sup_right
instEssentiallySmallOfSmall πŸ“–mathematicalβ€”EssentiallySmallβ€”le_isoClosure
instEssentiallySmallOppositeOp πŸ“–mathematicalβ€”EssentiallySmall
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Category.toCategoryStruct
β€”β€”
instEssentiallySmallTopOfEssentiallySmall πŸ“–mathematicalβ€”EssentiallySmall
Top.top
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.instTopForall
BooleanAlgebra.toTop
Prop.instBooleanAlgebra
β€”instSmallOfObjOfSmall
UnivLE.small
UnivLE.self
instEssentiallySmallUnopOfOpposite πŸ“–mathematicalβ€”EssentiallySmall
unop
CategoryTheory.Category.toCategoryStruct
β€”β€”
instSmallFullSubcategoryOfSmall πŸ“–mathematicalβ€”Small
FullSubcategory
β€”small_of_surjective
FullSubcategory.property
instSmallISupOfSmall πŸ“–mathematicalSmalliSup
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.supSet
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
Prop.instCompleteLattice
β€”small_of_surjective
small_sigma
instSmallMax πŸ“–mathematicalβ€”Small
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.instMaxForall_mathlib
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Prop.instCompleteLattice
β€”small_of_surjective
small_sum
instSmallMin πŸ“–mathematicalβ€”Small
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.instMinForall_mathlib
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
Prop.instCompleteLattice
β€”Small.of_le
inf_le_right
instSmallMin_1 πŸ“–mathematicalβ€”Small
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.instMinForall_mathlib
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
Prop.instCompleteLattice
β€”Small.of_le
inf_le_left
instSmallOfObjOfSmall πŸ“–mathematicalβ€”Small
ofObj
CategoryTheory.Category.toCategoryStruct
β€”small_of_surjective
instSmallOppositeOp πŸ“–mathematicalβ€”Small
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Category.toCategoryStruct
β€”small_of_injective
Equiv.injective
instSmallOppositeOp_1 πŸ“–mathematicalβ€”Small
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Category.toCategoryStruct
β€”β€”
instSmallPair πŸ“–mathematicalβ€”Small
pair
CategoryTheory.Category.toCategoryStruct
β€”instSmallOfObjOfSmall
small_sum
UnivLE.small
univLE_of_max
UnivLE.self
instSmallStrictMap πŸ“–mathematicalβ€”Small
strictMap
β€”small_of_surjective
instSmallUnopOfOpposite πŸ“–mathematicalβ€”Small
unop
CategoryTheory.Category.toCategoryStruct
β€”small_congr
instSmallUnopOfOpposite_1 πŸ“–mathematicalβ€”Small
unop
CategoryTheory.Category.toCategoryStruct
β€”β€”
small_op_iff πŸ“–mathematicalβ€”Small
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Category.toCategoryStruct
β€”small_congr
small_unop_iff πŸ“–mathematicalβ€”Small
unop
CategoryTheory.Category.toCategoryStruct
Opposite
CategoryTheory.Category.opposite
β€”small_op_iff
op_unop

CategoryTheory.ObjectProperty.EssentiallySmall

Theorems

NameKindAssumesProvesValidatesDepends On
exists_small πŸ“–mathematicalβ€”CategoryTheory.ObjectProperty.isoClosureβ€”exists_small_le
le_antisymm
CategoryTheory.ObjectProperty.isoClosure_le_iff
exists_small_le πŸ“–mathematicalβ€”CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
CategoryTheory.ObjectProperty.isoClosure
β€”exists_small_le'
small_of_surjective
CategoryTheory.ObjectProperty.instSmallMin_1
exists_small_le' πŸ“–mathematicalβ€”CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
CategoryTheory.ObjectProperty.isoClosure
β€”β€”
of_le πŸ“–mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
CategoryTheory.ObjectProperty.EssentiallySmallβ€”exists_small_le'
LE.le.trans

CategoryTheory.ObjectProperty.Small

Theorems

NameKindAssumesProvesValidatesDepends On
of_le πŸ“–mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
CategoryTheory.ObjectProperty.Smallβ€”small_of_injective
Subtype.map_injective

---

← Back to Index