Smallness of a property of objects #
In this file, given P : ObjectProperty C, we define
ObjectProperty.Small.{w} P as an abbreviation for Small.{w} (Subtype P).
@[reducible, inline]
abbrev
CategoryTheory.ObjectProperty.Small
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
:
A property of objects is small relative to a universe w
if the corresponding subtype is.
Equations
Instances For
instance
CategoryTheory.ObjectProperty.instSmallFullSubcategoryOfSmall
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
[ObjectProperty.Small.{w, v, u} P]
:
theorem
CategoryTheory.ObjectProperty.Small.of_le
{C : Type u}
[Category.{v, u} C]
{P Q : ObjectProperty C}
[ObjectProperty.Small.{w, v, u} Q]
(h : P โค Q)
:
instance
CategoryTheory.ObjectProperty.instSmallOppositeOp
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
[ObjectProperty.Small.{w, v, u} P]
:
instance
CategoryTheory.ObjectProperty.instSmallUnopOfOpposite
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty Cแตแต)
[ObjectProperty.Small.{w, v, u} P]
:
instance
CategoryTheory.ObjectProperty.instSmallOfObjOfSmall
{C : Type u}
[Category.{v, u} C]
{ฮน : Type u_1}
(X : ฮน โ C)
[Small.{w, u_1} ฮน]
:
instance
CategoryTheory.ObjectProperty.instSmallMin
{C : Type u}
[Category.{v, u} C]
{P Q : ObjectProperty C}
[ObjectProperty.Small.{w, v, u} Q]
:
ObjectProperty.Small.{w, v, u} (P โ Q)
instance
CategoryTheory.ObjectProperty.instSmallMin_1
{C : Type u}
[Category.{v, u} C]
{P Q : ObjectProperty C}
[ObjectProperty.Small.{w, v, u} P]
:
ObjectProperty.Small.{w, v, u} (P โ Q)
instance
CategoryTheory.ObjectProperty.instSmallMax
{C : Type u}
[Category.{v, u} C]
{P Q : ObjectProperty C}
[ObjectProperty.Small.{w, v, u} P]
[ObjectProperty.Small.{w, v, u} Q]
:
ObjectProperty.Small.{w, v, u} (P โ Q)
instance
CategoryTheory.ObjectProperty.instSmallISupOfSmall
{C : Type u}
[Category.{v, u} C]
{ฮฑ : Type u_1}
(P : ฮฑ โ ObjectProperty C)
[โ (a : ฮฑ), ObjectProperty.Small.{w, v, u} (P a)]
[Small.{w, u_1} ฮฑ]
:
ObjectProperty.Small.{w, v, u} (โจ (a : ฮฑ), P a)
@[simp]
theorem
CategoryTheory.ObjectProperty.small_op_iff
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
:
@[simp]
theorem
CategoryTheory.ObjectProperty.small_unop_iff
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty Cแตแต)
:
instance
CategoryTheory.ObjectProperty.instSmallOppositeOp_1
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
[ObjectProperty.Small.{w, v, u} P]
:
class
CategoryTheory.ObjectProperty.EssentiallySmall
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
:
A property of objects is essentially small relative to a universe w
if it is contained in the closure by isomorphisms of a small property.
- exists_small_le' : โ (Q : ObjectProperty C) (_ : ObjectProperty.Small.{w, v, u} Q), P โค Q.isoClosure
Instances
theorem
CategoryTheory.ObjectProperty.EssentiallySmall.exists_small_le
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
[ObjectProperty.EssentiallySmall.{w, v, u} P]
:
โ (Q : ObjectProperty C) (_ : ObjectProperty.Small.{w, v, u} Q), Q โค P โง P โค Q.isoClosure
theorem
CategoryTheory.ObjectProperty.EssentiallySmall.exists_small
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
[P.IsClosedUnderIsomorphisms]
[ObjectProperty.EssentiallySmall.{w, v, u} P]
:
โ (Pโ : ObjectProperty C) (_ : ObjectProperty.Small.{w, v, u} Pโ), P = Pโ.isoClosure
theorem
CategoryTheory.ObjectProperty.EssentiallySmall.of_le
{C : Type u}
[Category.{v, u} C]
{P Q : ObjectProperty C}
[ObjectProperty.EssentiallySmall.{w, v, u} Q]
(h : P โค Q)
:
instance
CategoryTheory.ObjectProperty.instEssentiallySmallMax
{C : Type u}
[Category.{v, u} C]
{P Q : ObjectProperty C}
[ObjectProperty.EssentiallySmall.{w, v, u} P]
[ObjectProperty.EssentiallySmall.{w, v, u} Q]
:
instance
CategoryTheory.ObjectProperty.instEssentiallySmallISupOfSmall
{C : Type u}
[Category.{v, u} C]
{ฮฑ : Type u_1}
(P : ฮฑ โ ObjectProperty C)
[โ (a : ฮฑ), ObjectProperty.EssentiallySmall.{w, v, u} (P a)]
[Small.{w, u_1} ฮฑ]
:
ObjectProperty.EssentiallySmall.{w, v, u} (โจ (a : ฮฑ), P a)
@[simp]
instance
CategoryTheory.ObjectProperty.instSmallStrictMap
{C : Type u}
[Category.{v, u} C]
{D : Type u'}
[Category.{v', u'} D]
(P : ObjectProperty C)
[ObjectProperty.Small.{w, v, u} P]
(F : Functor C D)
:
instance
CategoryTheory.ObjectProperty.instEssentiallySmallMap
{C : Type u}
[Category.{v, u} C]
{D : Type u'}
[Category.{v', u'} D]
(P : ObjectProperty C)
[ObjectProperty.EssentiallySmall.{w, v, u} P]
(F : Functor C D)
:
theorem
CategoryTheory.ObjectProperty.exists_equivalence_iff
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
[LocallySmall.{w', v, u} C]
:
(โ (J : Type w) (x : Category.{w', w} J), Nonempty (P.FullSubcategory โ J)) โ ObjectProperty.EssentiallySmall.{w, v, u} P
theorem
CategoryTheory.exists_equivalence_iff_of_locallySmall
(C : Type u)
[Category.{v, u} C]
[LocallySmall.{w', v, u} C]
:
(โ (J : Type w) (x : Category.{w', w} J), Nonempty (C โ J)) โ ObjectProperty.EssentiallySmall.{w, v, u} โค