Documentation Verification Report

RepresentedBy

📁 Source: Mathlib/CategoryTheory/RepresentedBy.lean

Statistics

MetricCount
DefinitionsIsRepresentedBy, representableBy, uliftYonedaIso
3
Theoremsiff_exists_isRepresentedBy, iff_exists_representableBy, iff_isIso_uliftYonedaEquiv, iff_natIso, iff_of_isoObj, map_bijective, of_isRepresentable, of_isoObj, of_natIso, representableBy_homEquiv_apply, uliftYonedaIso_hom, isRepresentedBy, isRepresentedBy_iff
13
Total16

CategoryTheory.Functor

Definitions

NameCategoryTheorems
IsRepresentedBy 📖CompData
8 mathmath: IsRepresentedBy.of_isRepresentable, isRepresentedBy_iff, IsRepresentable.iff_exists_isRepresentedBy, RepresentableBy.isRepresentedBy, IsRepresentedBy.iff_isIso_uliftYonedaEquiv, IsRepresentedBy.iff_of_isoObj, IsRepresentedBy.iff_natIso, IsRepresentedBy.iff_exists_representableBy

Theorems

NameKindAssumesProvesValidatesDepends On
isRepresentedBy_iff 📖mathematicalIsRepresentedBy
Function.Bijective
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
map
Quiver.Hom.op

CategoryTheory.Functor.IsRepresentable

Theorems

NameKindAssumesProvesValidatesDepends On
iff_exists_isRepresentedBy 📖mathematicalCategoryTheory.Functor.IsRepresentable
CategoryTheory.Functor.IsRepresentedBy
CategoryTheory.Functor.IsRepresentedBy.of_isRepresentable
CategoryTheory.Functor.RepresentableBy.isRepresentable

CategoryTheory.Functor.IsRepresentedBy

Definitions

NameCategoryTheorems
representableBy 📖CompOp
1 mathmath: representableBy_homEquiv_apply
uliftYonedaIso 📖CompOp
1 mathmath: uliftYonedaIso_hom

Theorems

NameKindAssumesProvesValidatesDepends On
iff_exists_representableBy 📖mathematicalCategoryTheory.Functor.IsRepresentedBy
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Functor.RepresentableBy.homEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.FunctorToTypes.map_id_apply
CategoryTheory.Functor.RepresentableBy.isRepresentedBy
iff_isIso_uliftYonedaEquiv 📖mathematicalCategoryTheory.Functor.IsRepresentedBy
CategoryTheory.IsIso
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.uliftYoneda
CategoryTheory.Functor.comp
CategoryTheory.uliftFunctor
DFunLike.coe
Equiv
Opposite.op
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.uliftYonedaEquiv
CategoryTheory.Functor.isRepresentedBy_iff
CategoryTheory.NatTrans.isIso_iff_isIso_app
Function.Surjective.forall
Opposite.op_surjective
CategoryTheory.isIso_iff_bijective
Function.Bijective.of_comp_iff
Equiv.bijective
Function.Bijective.of_comp_iff'
iff_natIso 📖mathematicalCategoryTheory.Functor.IsRepresentedBy
CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.FunctorToTypes.hom_inv_id_app_apply
of_natIso
iff_of_isoObj 📖mathematicalCategoryTheory.Functor.IsRepresentedBy
CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv_hom_id
CategoryTheory.FunctorToTypes.map_id_apply
of_isoObj
map_bijective 📖mathematicalCategoryTheory.Functor.IsRepresentedByFunction.Bijective
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
CategoryTheory.Functor.map
Quiver.Hom.op
of_isRepresentable 📖mathematicalCategoryTheory.Functor.IsRepresentedBy
CategoryTheory.Functor.reprX
CategoryTheory.Functor.reprx
CategoryTheory.Functor.RepresentableBy.isRepresentedBy
of_isoObj 📖mathematicalCategoryTheory.Functor.IsRepresentedByCategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
iff_exists_representableBy
CategoryTheory.Category.id_comp
of_natIso 📖mathematicalCategoryTheory.Functor.IsRepresentedByCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
iff_exists_representableBy
CategoryTheory.FunctorToTypes.map_id_apply
representableBy_homEquiv_apply 📖mathematicalCategoryTheory.Functor.IsRepresentedByDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Functor.RepresentableBy.homEquiv
representableBy
CategoryTheory.Functor.map
Quiver.Hom.op
uliftYonedaIso_hom 📖mathematicalCategoryTheory.Functor.IsRepresentedByCategoryTheory.Iso.hom
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.uliftYoneda
CategoryTheory.Functor.comp
CategoryTheory.uliftFunctor
uliftYonedaIso
DFunLike.coe
Equiv
Opposite.op
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.uliftYonedaEquiv

CategoryTheory.Functor.RepresentableBy

Theorems

NameKindAssumesProvesValidatesDepends On
isRepresentedBy 📖mathematicalCategoryTheory.Functor.IsRepresentedBy
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.IsRepresentedBy.iff_isIso_uliftYonedaEquiv
CategoryTheory.NatTrans.ext'
CategoryTheory.types_ext
CategoryTheory.Iso.isIso_hom

---

← Back to Index