Documentation

Mathlib.CategoryTheory.RepresentedBy

IsRepresentedBy predicate #

In this file we define the predicate IsRepresentedBy: A presheaf F is represented by X with universal element x : F.obj X if the natural transformation yoneda.obj X โŸถ F induced by x is an isomorphism.

For other declarations expressing a functor is representable, see also:

The relations to these other notions are given as CategoryTheory.Functor.IsRepresentable.iff_exists_isRepresentedBy and CategoryTheory.Functor.IsRepresentedBy.iff_exists_representableBy.

TODOs #

A presheaf F is represented by X with universal element x : F.obj X if the natural transformation yoneda.obj X โŸถ F induced by x is an isomorphism. For better universe generality, we state this manually as for every Y, the induced map (Y โŸถ X) โ†’ F.obj Y is bijective.

Instances For

    If F is represented by X with universal element x : F.obj X, modulo universe lifting, it is isomorphic to yoneda.obj X.

    Equations
      Instances For

        The canonical representation induced by the universal element x : F.obj X.

        Equations
          Instances For