Documentation Verification Report

LocallySurjective

📁 Source: Mathlib/CategoryTheory/Sites/Coherent/LocallySurjective.lean

Statistics

MetricCount
Definitions0
TheoremsisLocallySurjective_iff, presheafIsLocallySurjective_iff, isLocallySurjective_iff, presheafIsLocallySurjective_iff, surjective_of_isLocallySurjective_sheaf_of_types, isLocallySurjective_iff, isLocallySurjective_sheaf_of_types
7
Total7

CategoryTheory.coherentTopology

Theorems

NameKindAssumesProvesValidatesDepends On
isLocallySurjective_iff 📖mathematicalCategoryTheory.Sheaf.IsLocallySurjective
CategoryTheory.coherentTopology
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CategoryTheory.Presheaf.IsLocallySurjective
CategoryTheory.regularTopology
CategoryTheory.Sheaf.val
CategoryTheory.Sheaf.Hom.val
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
presheafIsLocallySurjective_iff
CategoryTheory.Presheaf.instPreservesFiniteProductsOppositeVal
presheafIsLocallySurjective_iff 📖mathematicalCategoryTheory.Presheaf.IsLocallySurjective
CategoryTheory.coherentTopology
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.regularTopology
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.Presheaf.isLocallySurjective_iff_whisker_forget
CategoryTheory.regularTopology.isLocallySurjective_sheaf_of_types
CategoryTheory.Limits.comp_preservesFiniteProducts
CategoryTheory.Presheaf.isLocallySurjective_of_le
CategoryTheory.extensive_regular_generate_coherent
GaloisConnection.monotone_l
GaloisInsertion.gc
le_sup_right

CategoryTheory.extensiveTopology

Theorems

NameKindAssumesProvesValidatesDepends On
isLocallySurjective_iff 📖mathematicalCategoryTheory.Sheaf.IsLocallySurjective
CategoryTheory.extensiveTopology
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
CategoryTheory.NatTrans.app
CategoryTheory.Sheaf.Hom.val
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
presheafIsLocallySurjective_iff
CategoryTheory.instPreservesFiniteProductsOppositeVal
presheafIsLocallySurjective_iff 📖mathematicalCategoryTheory.Presheaf.IsLocallySurjective
CategoryTheory.extensiveTopology
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
CategoryTheory.NatTrans.app
CategoryTheory.Presheaf.isLocallySurjective_iff_whisker_forget
surjective_of_isLocallySurjective_sheaf_of_types
CategoryTheory.Limits.comp_preservesFiniteProducts
CategoryTheory.Sieve.id_mem_iff_eq_top
CategoryTheory.Functor.map_id
CategoryTheory.id_apply
CategoryTheory.GrothendieckTopology.top_mem'
surjective_of_isLocallySurjective_sheaf_of_types 📖mathematicalCategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
CategoryTheory.NatTrans.app
CategoryTheory.Presheaf.IsLocallySurjective.imageSieve_mem
mem_sieves_iff_contains_colimit_cofan
CategoryTheory.Functor.initial_of_isLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Equivalence.isEquivalence_inverse
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Limits.instPreservesLimitsOfShapeDiscreteOfFiniteOfPreservesFiniteProducts
CategoryTheory.Limits.Concrete.isLimit_ext
CategoryTheory.Functor.corepresentable_preservesLimit
CategoryTheory.Types.instIsCorepresentableForgetTypeHom
CategoryTheory.NatTrans.naturality_apply
CategoryTheory.Limits.IsLimit.map_π

CategoryTheory.regularTopology

Theorems

NameKindAssumesProvesValidatesDepends On
isLocallySurjective_iff 📖mathematicalCategoryTheory.Presheaf.IsLocallySurjective
CategoryTheory.regularTopology
DFunLike.coe
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.ConcreteCategory.hom
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
mem_sieves_iff_hasEffectiveEpi
isLocallySurjective_sheaf_of_types 📖mathematicalCategoryTheory.Presheaf.IsLocallySurjective
CategoryTheory.regularTopology
CategoryTheory.types
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.Presheaf.IsLocallySurjective.imageSieve_mem
CategoryTheory.coherentTopology.mem_sieves_iff_hasEffectiveEpiFamily
mem_sieves_iff_hasEffectiveEpi
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.FinitaryPreExtensive.hasFiniteCoproducts
CategoryTheory.Limits.Types.hasLimit
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.instHasProductOppositeOp
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Limits.instPreservesLimitsOfShapeDiscreteOfFiniteOfPreservesFiniteProducts
CategoryTheory.instEffectiveEpiDescOfEffectiveEpiFamily
CategoryTheory.Limits.preservesLimitsOfShape_of_equiv
CategoryTheory.Limits.Concrete.isLimit_ext
CategoryTheory.Functor.corepresentable_preservesLimit
CategoryTheory.Types.instIsCorepresentableForgetTypeHom
CategoryTheory.NatTrans.naturality_apply
CategoryTheory.FunctorToTypes.map_comp_apply
CategoryTheory.Limits.opCoproductIsoProduct_inv_comp_ι
CategoryTheory.Limits.piComparison_comp_π
CategoryTheory.Limits.Types.productIso_hom_comp_eval
CategoryTheory.inv_hom_id_apply
CategoryTheory.Iso.eq_inv_comp
CategoryTheory.Limits.Sigma.ι_desc

---

← Back to Index