Documentation

Mathlib.CategoryTheory.Sites.Coherent.LocallySurjective

Locally surjective morphisms of coherent sheaves #

This file characterises locally surjective morphisms of presheaves for the coherent, regular and extensive topologies.

Main results #

theorem CategoryTheory.regularTopology.isLocallySurjective_iff {C : Type u_1} (D : Type u_2) [Category.{v_1, u_1} C] [Category.{v_2, u_2} D] {FD : D โ†’ D โ†’ Type u_3} {CD : D โ†’ Type w} [(X Y : D) โ†’ FunLike (FD X Y) (CD X) (CD Y)] [ConcreteCategory D FD] [Preregular C] {F G : Functor Cแต’แต– D} (f : F โŸถ G) :
Presheaf.IsLocallySurjective (regularTopology C) f โ†” โˆ€ (X : C) (y : ToType (G.obj (Opposite.op X))), โˆƒ (X' : C) (ฯ† : X' โŸถ X) (_ : EffectiveEpi ฯ†) (x : ToType (F.obj (Opposite.op X'))), (ConcreteCategory.hom (f.app (Opposite.op X'))) x = (ConcreteCategory.hom (G.map (Opposite.op ฯ†))) y
theorem CategoryTheory.extensiveTopology.isLocallySurjective_iff {C : Type u_1} (D : Type u_2) [Category.{v_1, u_1} C] [Category.{v_2, u_2} D] {FD : D โ†’ D โ†’ Type u_3} {CD : D โ†’ Type w} [(X Y : D) โ†’ FunLike (FD X Y) (CD X) (CD Y)] [ConcreteCategory D FD] [FinitaryExtensive C] {F G : Sheaf (extensiveTopology C) D} (f : F โŸถ G) [Limits.PreservesFiniteProducts (forget D)] :