Documentation

Mathlib.CategoryTheory.Sites.Coherent.SheafComparison

Categories of coherent sheaves #

Given a fully faithful functor F : C โฅค D into a precoherent category, which preserves and reflects finite effective epi families, and satisfies the property F.EffectivelyEnough (meaning that to every object in C there is an effective epi from an object in the image of F), the categories of coherent sheaves on C and D are equivalent (see CategoryTheory.coherentTopology.equivalence).

The main application of this equivalence is the characterisation of condensed sets as coherent sheaves on either CompHaus, Profinite or Stonean. See the file Mathlib/Condensed/Equivalence.lean.

We give the corresponding result for the regular topology as well (see CategoryTheory.regularTopology.equivalence).

theorem CategoryTheory.coherentTopology.exists_effectiveEpiFamily_iff_mem_induced {C : Type u_1} {D : Type u_2} [Category.{v_1, u_1} C] [Category.{v_2, u_2} D] (F : Functor C D) [F.PreservesFiniteEffectiveEpiFamilies] [F.ReflectsFiniteEffectiveEpiFamilies] [F.Full] [F.Faithful] [F.EffectivelyEnough] [Precoherent D] (X : C) (S : Sieve X) :
(โˆƒ (ฮฑ : Type) (_ : Finite ฮฑ) (Y : ฮฑ โ†’ C) (ฯ€ : (a : ฮฑ) โ†’ Y a โŸถ X), EffectiveEpiFamily Y ฯ€ โˆง โˆ€ (a : ฮฑ), S.arrows (ฯ€ a)) โ†” S โˆˆ (F.inducedTopology (coherentTopology D)) X

The equivalence from coherent sheaves on C to coherent sheaves on D, given a fully faithful functor F : C โฅค D to a precoherent category, which preserves and reflects effective epimorphic families, and satisfies F.EffectivelyEnough.

Equations
    Instances For

      The equivalence from coherent sheaves on C to coherent sheaves on D, given a fully faithful functor F : C โฅค D to an extensive preregular category, which preserves and reflects effective epimorphisms and satisfies F.EffectivelyEnough.

      Equations
        Instances For

          The equivalence from regular sheaves on C to regular sheaves on D, given a fully faithful functor F : C โฅค D to a preregular category, which preserves and reflects effective epimorphisms and satisfies F.EffectivelyEnough.

          Equations
            Instances For

              The categories of coherent sheaves and extensive sheaves on C are equivalent if C is preregular, finitary extensive, and every object is projective.

              Equations
                Instances For
                  @[simp]
                  theorem CategoryTheory.Presheaf.coherentExtensiveEquivalence_counitIso {C : Type u_1} [Category.{v_1, u_1} C] {A : Type uโ‚ƒ} [Category.{vโ‚ƒ, uโ‚ƒ} A] [Preregular C] [FinitaryExtensive C] [โˆ€ (X : C), Projective X] :
                  coherentExtensiveEquivalence.counitIso = Iso.refl ({ obj := fun (F : Sheaf (extensiveTopology C) A) => { val := F.val, cond := โ‹ฏ }, map := fun {X Y : Sheaf (extensiveTopology C) A} (f : X โŸถ Y) => { val := f.val }, map_id := โ‹ฏ, map_comp := โ‹ฏ }.comp { obj := fun (F : Sheaf (coherentTopology C) A) => { val := F.val, cond := โ‹ฏ }, map := fun {X Y : Sheaf (coherentTopology C) A} (f : X โŸถ Y) => { val := f.val }, map_id := โ‹ฏ, map_comp := โ‹ฏ })