Documentation

Mathlib.CategoryTheory.Sites.Coherent.RegularSheaves

Sheaves for the regular topology #

This file characterises sheaves for the regular topology.

Main results #

A presieve is regular if it consists of a single effective epimorphism.

Instances

    A contravariant functor on C satisfies SingleEqualizerCondition with respect to a morphism π if it takes its kernel pair to an equalizer diagram.

    Equations
      Instances For

        A contravariant functor on C satisfies EqualizerCondition if it takes kernel pairs of effective epimorphisms to equalizer diagrams.

        Equations
          Instances For

            The equalizer condition is preserved by natural isomorphism.

            Precomposing with a pullback-preserving functor preserves the equalizer condition.

            def CategoryTheory.regularTopology.mapToEqualizer {C : Type u_1} [Category.{v_1, u_1} C] (P : Functor Cᵒᵖ (Type u_4)) {W X B : C} (f : X B) (g₁ g₂ : W X) (w : CategoryStruct.comp g₁ f = CategoryStruct.comp g₂ f) :
            P.obj (Opposite.op B){x : P.obj (Opposite.op X) | P.map g₁.op x = P.map g₂.op x}

            The canonical map to the explicit equalizer.

            Equations
              Instances For
                @[deprecated CategoryTheory.regularTopology.mapToEqualizer (since := "2025-11-23")]
                def CategoryTheory.regularTopology.MapToEqualizer {C : Type u_1} [Category.{v_1, u_1} C] (P : Functor Cᵒᵖ (Type u_4)) {W X B : C} (f : X B) (g₁ g₂ : W X) (w : CategoryStruct.comp g₁ f = CategoryStruct.comp g₂ f) :
                P.obj (Opposite.op B){x : P.obj (Opposite.op X) | P.map g₁.op x = P.map g₂.op x}

                Alias of CategoryTheory.regularTopology.mapToEqualizer.


                The canonical map to the explicit equalizer.

                Equations
                  Instances For

                    An alternative phrasing of the explicit equalizer condition, using more categorical language.

                    P satisfies the equalizer condition iff its precomposition by an equivalence does.

                    noncomputable def CategoryTheory.regularTopology.isLimit_forkOfι_equiv {C : Type u_1} {D : Type u_2} [Category.{v_1, u_1} C] [Category.{v_2, u_2} D] (P : Functor Cᵒᵖ D) {X B : C} (π : X B) (c : Limits.PullbackCone π π) (hc : Limits.IsLimit c) :
                    Limits.IsLimit (Limits.Fork.ofι (P.map π.op) ) Limits.IsLimit (P.mapCone (Sieve.ofArrows (fun (x : Unit) => X) fun (x : Unit) => π).arrows.cocone.op)

                    Given a limiting pullback cone, the fork in SingleEqualizerCondition is limiting iff the diagram in Presheaf.isSheaf_iff_isLimit_coverage is limiting.

                    Equations
                      Instances For

                        Every presheaf is a sheaf for the regular topology if every object of C is projective.

                        Every Yoneda-presheaf is a sheaf for the regular topology.

                        The regular topology on any preregular category is subcanonical.