Documentation Verification Report

RegularSheaves

πŸ“ Source: Mathlib/CategoryTheory/Sites/Coherent/RegularSheaves.lean

Statistics

MetricCount
Definitionsregular, EqualizerCondition, MapToEqualizer, SingleEqualizerCondition, isLimit_forkOfΞΉ_equiv, mapToEqualizer
6
Theoremssingle_epi, bijective_mapToEqualizer_pullback, bijective_mapToEqualizer_pullback', mk, mk', equalizerConditionMap_iff_nonempty_isLimit, equalizerCondition_iff_isIso_lift, equalizerCondition_iff_isSheaf, equalizerCondition_iff_of_equivalence, equalizerCondition_of_natIso, equalizerCondition_precomp_of_preservesPullback, equalizerCondition_w, equalizerCondition_w', isSheafFor_regular_of_projective, isSheaf_of_projective, isSheaf_yoneda_obj, mapToEqualizer_eq_comp, parallelPair_pullback_initial, subcanonical
19
Total25

CategoryTheory.Presieve

Definitions

NameCategoryTheorems
regular πŸ“–CompDataβ€”

CategoryTheory.Presieve.regular

Theorems

NameKindAssumesProvesValidatesDepends On
single_epi πŸ“–mathematicalβ€”CategoryTheory.Presieve.ofArrows
CategoryTheory.EffectiveEpi
β€”β€”

CategoryTheory.regularTopology

Definitions

NameCategoryTheorems
EqualizerCondition πŸ“–MathDef
10 mathmath: EqualizerCondition.mk', EqualizerCondition.mk, equalizerCondition_yonedaPresheaf, CategoryTheory.Presheaf.isSheaf_iff_preservesFiniteProducts_and_equalizerCondition, equalizerCondition_iff_isSheaf, equalizerCondition_iff_isIso_lift, LightCondensed.equalizerCondition, equalizerCondition_iff_of_equivalence, Condensed.equalizerCondition_profinite, Condensed.equalizerCondition
MapToEqualizer πŸ“–CompOpβ€”
SingleEqualizerCondition πŸ“–MathDef
1 mathmath: equalizerConditionMap_iff_nonempty_isLimit
isLimit_forkOfΞΉ_equiv πŸ“–CompOpβ€”
mapToEqualizer πŸ“–CompOp
3 mathmath: EqualizerCondition.bijective_mapToEqualizer_pullback', mapToEqualizer_eq_comp, EqualizerCondition.bijective_mapToEqualizer_pullback

Theorems

NameKindAssumesProvesValidatesDepends On
equalizerConditionMap_iff_nonempty_isLimit πŸ“–mathematicalβ€”SingleEqualizerCondition
CategoryTheory.Limits.IsLimit
Opposite
CategoryTheory.Presieve.category
CategoryTheory.Sieve.arrows
CategoryTheory.Sieve.ofArrows
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.Presieve.diagram
CategoryTheory.Functor.mapCone
CategoryTheory.Limits.Cocone.op
CategoryTheory.Presieve.cocone
β€”CategoryTheory.Limits.pullback.condition
equalizerCondition_w
equalizerCondition_iff_isIso_lift πŸ“–mathematicalβ€”EqualizerCondition
CategoryTheory.types
CategoryTheory.IsIso
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Limits.equalizer
CategoryTheory.Limits.pullback
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback.fst
CategoryTheory.Limits.pullback.snd
CategoryTheory.Limits.Types.hasLimit
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.parallelPair
CategoryTheory.Limits.equalizer.lift
equalizerCondition_w'
β€”CategoryTheory.Limits.Types.hasLimit
UnivLE.small
univLE_of_max
UnivLE.self
equalizerCondition_w'
CategoryTheory.Limits.pullback.condition
EqualizerCondition.bijective_mapToEqualizer_pullback
CategoryTheory.IsIso.of_isIso_comp_right
CategoryTheory.Iso.isIso_hom
mapToEqualizer_eq_comp
CategoryTheory.isIso_iff_bijective
CategoryTheory.IsIso.comp_isIso
equalizerCondition_iff_isSheaf πŸ“–mathematicalCategoryTheory.Limits.HasPullbackEqualizerCondition
CategoryTheory.Presheaf.IsSheaf
CategoryTheory.regularTopology
β€”CategoryTheory.Presheaf.isSheaf_iff_isLimit_coverage
equalizerConditionMap_iff_nonempty_isLimit
equalizerCondition_iff_of_equivalence πŸ“–mathematicalβ€”EqualizerCondition
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Equivalence.inverse
CategoryTheory.Equivalence.op
β€”equalizerCondition_precomp_of_preservesPullback
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
CategoryTheory.Limits.PreservesLimits.preservesFiniteLimits
CategoryTheory.Functor.instPreservesLimitsOfSizeOfIsRightAdjoint
CategoryTheory.Functor.isRightAdjoint_of_isEquivalence
CategoryTheory.Equivalence.isEquivalence_inverse
CategoryTheory.Functor.instPreservesEffectiveEpisOfPreservesFiniteEffectiveEpiFamilies
CategoryTheory.Functor.instPreservesFiniteEffectiveEpiFamiliesOfPreservesEffectiveEpiFamilies
CategoryTheory.Functor.instPreservesEffectiveEpiFamiliesOfIsEquivalence
equalizerCondition_of_natIso
CategoryTheory.Equivalence.isEquivalence_functor
equalizerCondition_of_natIso πŸ“–β€”EqualizerConditionβ€”β€”equalizerCondition_w
CategoryTheory.NatTrans.naturality
equalizerCondition_precomp_of_preservesPullback πŸ“–mathematicalCategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
EqualizerCondition
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
β€”equalizerCondition_w
CategoryTheory.Limits.PullbackCone.condition
CategoryTheory.Functor.map_effectiveEpi
CategoryTheory.Category.id_comp
equalizerCondition_w πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.PullbackCone.fst
CategoryTheory.Limits.PullbackCone.snd
β€”CategoryTheory.Limits.PullbackCone.condition
equalizerCondition_w' πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Limits.pullback
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.pullback.fst
CategoryTheory.Limits.pullback.snd
β€”CategoryTheory.Limits.pullback.condition
isSheafFor_regular_of_projective πŸ“–mathematicalβ€”CategoryTheory.Presieve.IsSheafForβ€”CategoryTheory.Presieve.regular.single_epi
CategoryTheory.Presieve.isSheafFor_arrows_iff
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.FunctorToTypes.map_comp_apply
CategoryTheory.FunctorToTypes.map_id_apply
CategoryTheory.Category.id_comp
CategoryTheory.Category.assoc
CategoryTheory.Projective.factorThru_comp
CategoryTheory.Category.comp_id
isSheaf_of_projective πŸ“–mathematicalCategoryTheory.ProjectiveCategoryTheory.Presheaf.IsSheaf
CategoryTheory.regularTopology
β€”CategoryTheory.Presieve.isSheaf_coverage
isSheafFor_regular_of_projective
isSheaf_yoneda_obj πŸ“–mathematicalβ€”CategoryTheory.Presieve.IsSheaf
CategoryTheory.regularTopology
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
β€”eq_1
CategoryTheory.Presieve.isSheaf_coverage
CategoryTheory.Presieve.regular.single_epi
CategoryTheory.EffectiveEpi.effectiveEpi
CategoryTheory.Presieve.FamilyOfElements.Compatible.sieveExtend
CategoryTheory.Sieve.forallYonedaIsSheaf_iff_colimit
CategoryTheory.Presieve.ofArrows_pUnit
CategoryTheory.Sieve.generateSingleton_eq
CategoryTheory.Sieve.le_generate
CategoryTheory.Presieve.restrict_extend
CategoryTheory.Presieve.isAmalgamation_restrict
CategoryTheory.Presieve.isAmalgamation_sieveExtend
mapToEqualizer_eq_comp πŸ“–mathematicalβ€”mapToEqualizer
CategoryTheory.Limits.pullback
CategoryTheory.Limits.pullback.fst
CategoryTheory.Limits.pullback.snd
CategoryTheory.Limits.pullback.condition
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Limits.equalizer
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.Types.hasLimit
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.parallelPair
CategoryTheory.Limits.equalizer.lift
equalizerCondition_w'
CategoryTheory.Iso.hom
CategoryTheory.Limits.Types.equalizerIso
β€”CategoryTheory.Limits.pullback.condition
CategoryTheory.Limits.Types.hasLimit
UnivLE.small
univLE_of_max
UnivLE.self
equalizerCondition_w'
CategoryTheory.Iso.comp_inv_eq
CategoryTheory.Limits.equalizer.hom_ext
CategoryTheory.Category.assoc
CategoryTheory.Limits.Types.equalizerIso_inv_comp_ΞΉ
CategoryTheory.Limits.limit.lift_Ο€
parallelPair_pullback_initial πŸ“–mathematicalβ€”CategoryTheory.Functor.Initial
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
Opposite
CategoryTheory.Presieve.category
CategoryTheory.Sieve.arrows
CategoryTheory.Sieve.ofArrows
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
CategoryTheory.Limits.parallelPair
Opposite.op
CategoryTheory.Presieve.categoryMk
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.PullbackCone.fst
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Presieve.ofArrows
Quiver.Hom.op
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.homMk
CategoryTheory.Over.homMk
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Limits.PullbackCone.snd
CategoryTheory.Limits.PullbackCone.condition
β€”CategoryTheory.Limits.PullbackCone.condition
CategoryTheory.ObjectProperty.FullSubcategory.property
CategoryTheory.Over.w
CategoryTheory.Limits.PullbackCone.IsLimit.lift_fst_assoc
CategoryTheory.ObjectProperty.hom_ext
CategoryTheory.Over.OverMorphism.ext
CategoryTheory.Limits.PullbackCone.IsLimit.lift_fst
CategoryTheory.Limits.PullbackCone.IsLimit.lift_snd
subcanonical πŸ“–mathematicalβ€”CategoryTheory.GrothendieckTopology.Subcanonical
CategoryTheory.regularTopology
β€”CategoryTheory.GrothendieckTopology.Subcanonical.of_isSheaf_yoneda_obj
isSheaf_yoneda_obj

CategoryTheory.regularTopology.EqualizerCondition

Theorems

NameKindAssumesProvesValidatesDepends On
bijective_mapToEqualizer_pullback πŸ“–mathematicalCategoryTheory.regularTopology.EqualizerCondition
CategoryTheory.types
Function.Bijective
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
Set.Elem
setOf
CategoryTheory.Limits.pullback
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback.fst
CategoryTheory.Limits.pullback.snd
CategoryTheory.regularTopology.mapToEqualizer
CategoryTheory.Limits.pullback.condition
β€”bijective_mapToEqualizer_pullback'
bijective_mapToEqualizer_pullback' πŸ“–mathematicalCategoryTheory.regularTopology.EqualizerCondition
CategoryTheory.types
Function.Bijective
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
Set.Elem
setOf
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.PullbackCone.fst
CategoryTheory.Limits.PullbackCone.snd
CategoryTheory.regularTopology.mapToEqualizer
CategoryTheory.Limits.PullbackCone.condition
β€”CategoryTheory.Limits.PullbackCone.condition
Function.bijective_iff_existsUnique
CategoryTheory.regularTopology.equalizerCondition_w
CategoryTheory.Limits.Types.type_equalizer_iff_unique
mk πŸ“–mathematicalFunction.Bijective
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
Set.Elem
setOf
CategoryTheory.Limits.pullback
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback.fst
CategoryTheory.Limits.pullback.snd
CategoryTheory.regularTopology.mapToEqualizer
CategoryTheory.Limits.pullback.condition
CategoryTheory.regularTopology.EqualizerConditionβ€”CategoryTheory.Limits.pullback.condition
CategoryTheory.regularTopology.equalizerCondition_w
CategoryTheory.Limits.Types.type_equalizer_iff_unique
CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_hom_comp
CategoryTheory.op_comp
CategoryTheory.FunctorToTypes.map_comp_apply
Function.bijective_iff_existsUnique
mk' πŸ“–mathematicalFunction.Bijective
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
Set.Elem
setOf
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.PullbackCone.fst
CategoryTheory.Limits.PullbackCone.snd
CategoryTheory.regularTopology.mapToEqualizer
CategoryTheory.Limits.PullbackCone.condition
CategoryTheory.regularTopology.EqualizerConditionβ€”CategoryTheory.Limits.PullbackCone.condition
CategoryTheory.regularTopology.equalizerCondition_w
CategoryTheory.Limits.Types.type_equalizer_iff_unique
Function.bijective_iff_existsUnique

---

← Back to Index