Documentation Verification Report

Continuous

πŸ“ Source: Mathlib/CategoryTheory/Sites/Continuous.lean

Statistics

MetricCount
DefinitionsIsContinuous, PreservesOneHypercovers, sheafPushforwardContinuous, sheafPushforwardContinuousComp, sheafPushforwardContinuousComp', sheafPushforwardContinuousCompSheafToPresheafIso, sheafPushforwardContinuousId, sheafPushforwardContinuousId', sheafPushforwardContinuousIso, sheafPushforwardContinuousNatTrans, IsPreservedBy, map, isLimitMapMultiforkEquiv, map
14
Theoremsop_comp_isSheaf_of_types, instIsContinuousCompId, instIsContinuousCompId_1, instIsContinuousOfPreservesOneHypercovers, isContinuous_comp, isContinuous_comp', isContinuous_id, isContinuous_of_iso, isContinuous_of_preservesOneHypercovers, isContinuous_toGrothendieck_of_pullbacksPreservedBy, op_comp_isSheaf, op_comp_isSheaf_of_preservesOneHypercovers, op_comp_isSheaf_of_types, sheafPushforwardContinuousComp'_hom_app_val_app, sheafPushforwardContinuousComp'_inv_app_val_app, sheafPushforwardContinuousCompSheafToPresheafIso_hom_app_app, sheafPushforwardContinuousCompSheafToPresheafIso_inv_app_app, sheafPushforwardContinuousComp_hom_app_val_app, sheafPushforwardContinuousComp_inv_app_val_app, sheafPushforwardContinuousId'_hom_app_val_app, sheafPushforwardContinuousId'_inv_app_val_app, sheafPushforwardContinuousId_hom_app_val_app, sheafPushforwardContinuousId_inv_app_val_app, sheafPushforwardContinuousIso_hom, sheafPushforwardContinuousIso_inv, sheafPushforwardContinuousNatTrans_app_val, sheafPushforwardContinuous_map_val_app, sheafPushforwardContinuous_obj_val_map, sheafPushforwardContinuous_obj_val_obj, memβ‚€, mem₁, instIsPreservedById, map_toPreOneHypercover, map_Iβ‚€, map_I₁, map_X, map_Y, map_f, map_p₁, map_pβ‚‚
40
Total54

CategoryTheory.Functor

Definitions

NameCategoryTheorems
IsContinuous πŸ“–CompData
21 mathmath: Topology.IsOpenEmbedding.functor_isContinuous, AlgebraicGeometry.Scheme.Hom.instIsContinuousOpensOpensFunctorGrothendieckTopologyCarrierCarrierCommRingCat, CategoryTheory.GrothendieckTopology.instIsContinuousOverStarOver, instIsContinuousCompId_1, TopologicalSpace.Opens.instIsContinuousCompGrothendieckTopology, instIsContinuousOfPreservesOneHypercovers, CategoryTheory.instIsContinuousOverLeftDiscretePUnitIteratedSliceForwardOver, isContinuous_of_coverPreserving, isContinuous_id, IsCoverDense.isContinuous, CategoryTheory.instIsContinuousOverLeftDiscretePUnitIteratedSliceBackwardOver, isContinuous_toGrothendieck_of_pullbacksPreservedBy, isContinuous_comp, isContinuous_of_preservesOneHypercovers, instIsContinuousCompId, isContinuous_comp', isContinuous_of_iso, IsDenseSubsite.instIsContinuous, CategoryTheory.GrothendieckTopology.instIsContinuousOverForgetOver, instIsContinuousOpensCarrierMapGrothendieckTopology, CategoryTheory.GrothendieckTopology.instIsContinuousOverMapOver
PreservesOneHypercovers πŸ“–MathDefβ€”
sheafPushforwardContinuous πŸ“–CompOp
55 mathmath: CategoryTheory.GrothendieckTopology.overMapPullbackId_hom_app_val_app, SheafOfModules.pushforward_assoc, IsDenseSubsite.instIsIsoSheafAppCounitSheafAdjunctionCocontinuous, sheafPushforwardContinuousIso_inv, IsDenseSubsite.instIsEquivalenceSheafSheafPushforwardContinuous, sheafPushforwardContinuousComp'_inv_app_val_app, SheafOfModules.pushforwardNatIso_inv, CategoryTheory.GrothendieckTopology.overMapPullbackId_inv_app_val_app, SheafOfModules.instIsRightAdjointPushforwardCompSheafRingCatMapSheafPushforwardContinuous, sheafAdjunctionCocontinuous_counit_app_val, sheafPullbackConstruction.instIsRightAdjointSheafSheafPushforwardContinuousOfHasWeakSheafify, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapComp_inv_toNatTrans_app_val_app, sheafPushforwardContinuousNatTrans_app_val, sheafPushforwardContinuous_map_val_app, IsCoverDense.faithful_sheafPushforwardContinuous, SheafOfModules.pushforwardComp_inv_app_val_app, SheafOfModules.pushforwardNatTrans_id, sheafPushforwardContinuousCompSheafToPresheafIso_inv_app_app, IsDenseSubsite.sheafEquiv_inverse, sheafPushforwardContinuous_obj_val_map, SheafOfModules.conjugateEquiv_pullbackComp_inv, sheafPushforwardContinuousComp_inv_app_val_app, sheafPushforwardContinuousComp_hom_app_val_app, sheafPushforwardContinuous_obj_val_obj, SheafOfModules.pushforward_map_val, SheafOfModules.pushforwardComp_hom_app_val_app, sheafPushforwardContinuousId_hom_app_val_app, sheafPushforwardContinuousId'_inv_app_val_app, toSheafify_pullbackSheafificationCompatibility, SheafOfModules.pushforwardCongr_symm, SheafOfModules.unitToPushforwardObjUnit_val_app_apply, SheafOfModules.pullback_assoc, CategoryTheory.GrothendieckTopology.overMapPullbackComp_inv_app_val_app, sheafPushforwardContinuousCompSheafToPresheafIso_hom_app_app, SheafOfModules.pushforwardNatTrans_app_val_app, sheafPushforwardContinuousIso_hom, CategoryTheory.GrothendieckTopology.overMapPullbackComp_hom_app_val_app, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapComp_hom_toNatTrans_app_val_app, CategoryTheory.GrothendieckTopology.overMapPullbackCongr_hom_app_val_app, sheafPushforwardContinuousId_inv_app_val_app, SheafOfModules.pushforwardNatTrans_app_val_app_apply, sheafAdjunctionCocontinuous_homEquiv_apply_val, sheafPushforwardContinuousId'_hom_app_val_app, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapId_inv_toNatTrans_app_val_app, SheafOfModules.pushforwardNatIso_hom, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapId_hom_toNatTrans_app_val_app, pushforwardContinuousSheafificationCompatibility_hom_app_val, IsDenseSubsite.full_sheafPushforwardContinuous, sheafPushforwardContinuousComp'_hom_app_val_app, CategoryTheory.GrothendieckTopology.overMapPullbackCongr_inv_app_val_app, sheafAdjunctionCocontinuous_unit_app_val, SheafOfModules.pushforward_obj_val, IsDenseSubsite.faithful_sheafPushforwardContinuous, SheafOfModules.pushforwardNatTrans_comp, IsCoverDense.full_sheafPushforwardContinuous
sheafPushforwardContinuousComp πŸ“–CompOp
2 mathmath: sheafPushforwardContinuousComp_inv_app_val_app, sheafPushforwardContinuousComp_hom_app_val_app
sheafPushforwardContinuousComp' πŸ“–CompOp
2 mathmath: sheafPushforwardContinuousComp'_inv_app_val_app, sheafPushforwardContinuousComp'_hom_app_val_app
sheafPushforwardContinuousCompSheafToPresheafIso πŸ“–CompOp
2 mathmath: sheafPushforwardContinuousCompSheafToPresheafIso_inv_app_app, sheafPushforwardContinuousCompSheafToPresheafIso_hom_app_app
sheafPushforwardContinuousId πŸ“–CompOp
2 mathmath: sheafPushforwardContinuousId_hom_app_val_app, sheafPushforwardContinuousId_inv_app_val_app
sheafPushforwardContinuousId' πŸ“–CompOp
2 mathmath: sheafPushforwardContinuousId'_inv_app_val_app, sheafPushforwardContinuousId'_hom_app_val_app
sheafPushforwardContinuousIso πŸ“–CompOp
2 mathmath: sheafPushforwardContinuousIso_inv, sheafPushforwardContinuousIso_hom
sheafPushforwardContinuousNatTrans πŸ“–CompOp
9 mathmath: sheafPushforwardContinuousIso_inv, SheafOfModules.pushforwardNatIso_inv, sheafPushforwardContinuousNatTrans_app_val, SheafOfModules.pushforwardNatTrans_id, SheafOfModules.pushforwardNatTrans_app_val_app, sheafPushforwardContinuousIso_hom, SheafOfModules.pushforwardNatTrans_app_val_app_apply, SheafOfModules.pushforwardNatIso_hom, SheafOfModules.pushforwardNatTrans_comp

Theorems

NameKindAssumesProvesValidatesDepends On
instIsContinuousCompId πŸ“–mathematicalβ€”IsContinuous
comp
id
β€”β€”
instIsContinuousCompId_1 πŸ“–mathematicalβ€”IsContinuous
comp
id
β€”β€”
instIsContinuousOfPreservesOneHypercovers πŸ“–mathematicalPreservesOneHypercoversIsContinuousβ€”isContinuous_of_preservesOneHypercovers
CategoryTheory.GrothendieckTopology.instIsGeneratedByOneHypercovers
isContinuous_comp πŸ“–mathematicalβ€”IsContinuous
comp
β€”op_comp_isSheaf_of_types
CategoryTheory.isSheaf_iff_isSheaf_of_type
isContinuous_comp' πŸ“–mathematicalβ€”IsContinuousβ€”isContinuous_comp
isContinuous_of_iso
isContinuous_id πŸ“–mathematicalβ€”IsContinuous
id
β€”CategoryTheory.isSheaf_iff_isSheaf_of_type
CategoryTheory.Sheaf.cond
isContinuous_of_iso πŸ“–mathematicalβ€”IsContinuousβ€”CategoryTheory.Presieve.isSheaf_iso
op_comp_isSheaf_of_types
isContinuous_of_preservesOneHypercovers πŸ“–mathematicalPreservesOneHypercoversIsContinuousβ€”CategoryTheory.isSheaf_iff_isSheaf_of_type
op_comp_isSheaf_of_preservesOneHypercovers
isContinuous_toGrothendieck_of_pullbacksPreservedBy πŸ“–mathematicalCategoryTheory.Precoverage
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.Precoverage.instPartialOrder
CategoryTheory.Precoverage.comap
IsContinuous
CategoryTheory.Precoverage.toGrothendieck
β€”CategoryTheory.Precoverage.toGrothendieck_toCoverage
CategoryTheory.Presieve.isSheaf_coverage
CategoryTheory.Precoverage.preservesPairwisePullbacks_of_mem
CategoryTheory.Precoverage.hasPairwisePullbacks_of_mem
CategoryTheory.Presieve.IsSheafFor.comp_iff_of_preservesPairwisePullbacks
CategoryTheory.isSheaf_iff_isSheaf_of_type
op_comp_isSheaf πŸ“–mathematicalβ€”CategoryTheory.Presheaf.IsSheaf
comp
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Sheaf.val
β€”op_comp_isSheaf_of_types
CategoryTheory.isSheaf_iff_isSheaf_of_type
CategoryTheory.Sheaf.cond
op_comp_isSheaf_of_preservesOneHypercovers πŸ“–mathematicalPreservesOneHypercovers
CategoryTheory.Presheaf.IsSheaf
comp
Opposite
CategoryTheory.Category.opposite
op
β€”CategoryTheory.Presheaf.isSheaf_iff_of_isGeneratedByOneHypercovers
op_comp_isSheaf_of_types πŸ“–mathematicalβ€”CategoryTheory.Presieve.IsSheaf
comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
op
CategoryTheory.Sheaf.val
β€”IsContinuous.op_comp_isSheaf_of_types
sheafPushforwardContinuousComp'_hom_app_val_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
obj
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
comp
sheafPushforwardContinuous
CategoryTheory.Sheaf.Hom.val
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
sheafPushforwardContinuousComp'
map
Opposite.op
Opposite.unop
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.inv
β€”CategoryTheory.Category.id_comp
sheafPushforwardContinuousComp'_inv_app_val_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
obj
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
sheafPushforwardContinuous
comp
CategoryTheory.Sheaf.Hom.val
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
sheafPushforwardContinuousComp'
map
Opposite.op
Opposite.unop
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
β€”CategoryTheory.Category.comp_id
sheafPushforwardContinuousCompSheafToPresheafIso_hom_app_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
obj
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor
category
comp
sheafPushforwardContinuous
CategoryTheory.sheafToPresheaf
CategoryTheory.Iso.hom
whiskeringLeft
op
sheafPushforwardContinuousCompSheafToPresheafIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.val
Opposite.op
Opposite.unop
β€”β€”
sheafPushforwardContinuousCompSheafToPresheafIso_inv_app_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
obj
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor
category
comp
sheafPushforwardContinuous
CategoryTheory.sheafToPresheaf
CategoryTheory.Iso.inv
whiskeringLeft
op
sheafPushforwardContinuousCompSheafToPresheafIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.val
Opposite.op
Opposite.unop
β€”β€”
sheafPushforwardContinuousComp_hom_app_val_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
obj
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
comp
sheafPushforwardContinuous
CategoryTheory.Sheaf.Hom.val
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
isContinuous_comp
sheafPushforwardContinuousComp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Opposite.op
Opposite.unop
β€”isContinuous_comp
sheafPushforwardContinuousComp_inv_app_val_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
obj
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
comp
sheafPushforwardContinuous
CategoryTheory.Sheaf.Hom.val
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
isContinuous_comp
sheafPushforwardContinuousComp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Opposite.op
Opposite.unop
β€”isContinuous_comp
sheafPushforwardContinuousId'_hom_app_val_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
obj
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
sheafPushforwardContinuous
id
CategoryTheory.Sheaf.Hom.val
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
sheafPushforwardContinuousId'
map
Opposite.op
Opposite.unop
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.inv
β€”CategoryTheory.Category.comp_id
sheafPushforwardContinuousId'_inv_app_val_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
obj
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
id
sheafPushforwardContinuous
CategoryTheory.Sheaf.Hom.val
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
sheafPushforwardContinuousId'
map
Opposite.op
Opposite.unop
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
β€”CategoryTheory.Category.id_comp
sheafPushforwardContinuousId_hom_app_val_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
obj
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
sheafPushforwardContinuous
id
isContinuous_id
CategoryTheory.Sheaf.Hom.val
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
sheafPushforwardContinuousId
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”isContinuous_id
sheafPushforwardContinuousId_inv_app_val_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
obj
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
sheafPushforwardContinuous
id
isContinuous_id
CategoryTheory.Sheaf.Hom.val
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
sheafPushforwardContinuousId
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”isContinuous_id
sheafPushforwardContinuousIso_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
category
sheafPushforwardContinuous
sheafPushforwardContinuousIso
sheafPushforwardContinuousNatTrans
CategoryTheory.Iso.inv
β€”β€”
sheafPushforwardContinuousIso_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
category
sheafPushforwardContinuous
sheafPushforwardContinuousIso
sheafPushforwardContinuousNatTrans
CategoryTheory.Iso.hom
β€”β€”
sheafPushforwardContinuousNatTrans_app_val πŸ“–mathematicalβ€”CategoryTheory.Sheaf.Hom.val
obj
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
sheafPushforwardContinuous
CategoryTheory.NatTrans.app
sheafPushforwardContinuousNatTrans
whiskerRight
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.NatTrans.op
CategoryTheory.Sheaf.val
β€”β€”
sheafPushforwardContinuous_map_val_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
obj
CategoryTheory.Functor
category
whiskeringLeft
op
CategoryTheory.Sheaf.val
CategoryTheory.Sheaf.Hom.val
comp
op_comp_isSheaf
map
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
sheafPushforwardContinuous
Opposite.op
Opposite.unop
β€”op_comp_isSheaf
sheafPushforwardContinuous_obj_val_map πŸ“–mathematicalβ€”map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
obj
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
sheafPushforwardContinuous
Opposite.op
Opposite.unop
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Quiver.Hom.unop
β€”β€”
sheafPushforwardContinuous_obj_val_obj πŸ“–mathematicalβ€”obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
sheafPushforwardContinuous
Opposite.op
Opposite.unop
β€”β€”

CategoryTheory.Functor.IsContinuous

Theorems

NameKindAssumesProvesValidatesDepends On
op_comp_isSheaf_of_types πŸ“–mathematicalβ€”CategoryTheory.Presieve.IsSheaf
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.op
CategoryTheory.Sheaf.val
β€”β€”

CategoryTheory.GrothendieckTopology.OneHypercover

Definitions

NameCategoryTheorems
IsPreservedBy πŸ“–CompData
1 mathmath: instIsPreservedById
map πŸ“–CompOp
1 mathmath: map_toPreOneHypercover

Theorems

NameKindAssumesProvesValidatesDepends On
instIsPreservedById πŸ“–mathematicalβ€”IsPreservedBy
CategoryTheory.Functor.id
β€”memβ‚€
mem₁
map_toPreOneHypercover πŸ“–mathematicalβ€”toPreOneHypercover
CategoryTheory.Functor.obj
map
CategoryTheory.PreOneHypercover.map
β€”β€”

CategoryTheory.GrothendieckTopology.OneHypercover.IsPreservedBy

Theorems

NameKindAssumesProvesValidatesDepends On
memβ‚€ πŸ“–mathematicalβ€”CategoryTheory.Sieve
CategoryTheory.Functor.obj
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.PreZeroHypercover.sieveβ‚€
CategoryTheory.PreOneHypercover.toPreZeroHypercover
CategoryTheory.PreOneHypercover.map
CategoryTheory.GrothendieckTopology.OneHypercover.toPreOneHypercover
β€”β€”
mem₁ πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreOneHypercover.toPreZeroHypercover
CategoryTheory.GrothendieckTopology.OneHypercover.toPreOneHypercover
CategoryTheory.Functor.map
CategoryTheory.PreZeroHypercover.f
CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.PreOneHypercover.sieve₁
CategoryTheory.PreOneHypercover.map
β€”β€”

CategoryTheory.PreOneHypercover

Definitions

NameCategoryTheorems
isLimitMapMultiforkEquiv πŸ“–CompOpβ€”
map πŸ“–CompOp
10 mathmath: map_Iβ‚€, map_X, map_p₁, CategoryTheory.GrothendieckTopology.OneHypercover.IsPreservedBy.mem₁, CategoryTheory.GrothendieckTopology.OneHypercover.map_toPreOneHypercover, CategoryTheory.GrothendieckTopology.OneHypercover.IsPreservedBy.memβ‚€, map_Y, map_f, map_pβ‚‚, map_I₁

Theorems

NameKindAssumesProvesValidatesDepends On
map_Iβ‚€ πŸ“–mathematicalβ€”CategoryTheory.PreZeroHypercover.Iβ‚€
CategoryTheory.Functor.obj
toPreZeroHypercover
map
β€”β€”
map_I₁ πŸ“–mathematicalβ€”I₁
CategoryTheory.Functor.obj
map
β€”β€”
map_X πŸ“–mathematicalβ€”CategoryTheory.PreZeroHypercover.X
CategoryTheory.Functor.obj
toPreZeroHypercover
map
β€”β€”
map_Y πŸ“–mathematicalβ€”Y
CategoryTheory.Functor.obj
map
β€”β€”
map_f πŸ“–mathematicalβ€”CategoryTheory.PreZeroHypercover.f
CategoryTheory.Functor.obj
toPreZeroHypercover
map
CategoryTheory.Functor.map
CategoryTheory.PreZeroHypercover.X
β€”β€”
map_p₁ πŸ“–mathematicalβ€”p₁
CategoryTheory.Functor.obj
map
CategoryTheory.Functor.map
Y
CategoryTheory.PreZeroHypercover.X
toPreZeroHypercover
β€”β€”
map_pβ‚‚ πŸ“–mathematicalβ€”pβ‚‚
CategoryTheory.Functor.obj
map
CategoryTheory.Functor.map
Y
CategoryTheory.PreZeroHypercover.X
toPreZeroHypercover
β€”β€”

---

← Back to Index