Documentation

Mathlib.CategoryTheory.Sites.Continuous

Continuous functors between sites. #

We define the notion of continuous functor between sites: these are functors F such that the precomposition with F.op preserves sheaves of types (and actually sheaves in any category).

Main definitions #

Main result #

References #

The image of a 1-pre-hypercover by a functor.

Equations
    Instances For
      @[simp]
      theorem CategoryTheory.PreOneHypercover.map_I₁ {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {X : C} (E : PreOneHypercover X) (F : Functor C D) (i₁ i₂ : E.I₀) :
      (E.map F).I₁ i₁ i₂ = E.I₁ i₁ i₂
      @[simp]
      theorem CategoryTheory.PreOneHypercover.map_p₂ {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {X : C} (E : PreOneHypercover X) (F : Functor C D) (x✝ x✝¹ : E.I₀) (j : E.I₁ x✝ x✝¹) :
      (E.map F).p₂ j = F.map (E.p₂ j)
      @[simp]
      theorem CategoryTheory.PreOneHypercover.map_Y {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {X : C} (E : PreOneHypercover X) (F : Functor C D) (x✝ x✝¹ : E.I₀) (j : E.I₁ x✝ x✝¹) :
      (E.map F).Y j = F.obj (E.Y j)
      @[simp]
      theorem CategoryTheory.PreOneHypercover.map_X {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {X : C} (E : PreOneHypercover X) (F : Functor C D) (i : E.I₀) :
      (E.map F).X i = F.obj (E.X i)
      @[simp]
      theorem CategoryTheory.PreOneHypercover.map_f {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {X : C} (E : PreOneHypercover X) (F : Functor C D) (i : E.I₀) :
      (E.map F).f i = F.map (E.f i)
      @[simp]
      theorem CategoryTheory.PreOneHypercover.map_p₁ {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {X : C} (E : PreOneHypercover X) (F : Functor C D) (x✝ x✝¹ : E.I₀) (j : E.I₁ x✝ x✝¹) :
      (E.map F).p₁ j = F.map (E.p₁ j)

      If F : C ⥤ D, P : Dᵒᵖ ⥤ A and E is a 1-pre-hypercover of an object of X, then (E.map F).multifork P is a limit iff E.multifork (F.op ⋙ P) is a limit.

      Equations
        Instances For

          A 1-hypercover in C is preserved by a functor F : C ⥤ D if the mapped 1-pre-hypercover in D is a 1-hypercover for the given topology on D.

          Instances

            Given a 1-hypercover E : J.OneHypercover X of an object of C, a functor F : C ⥤ D such that E.IsPreservedBy F K for a Grothendieck topology K on D, this is the image of E by F, as a 1-hypercover of F.obj X for K.

            Equations
              Instances For
                @[reducible, inline]

                The condition that a functor F : C ⥤ D sends 1-hypercovers for J : GrothendieckTopology C to 1-hypercovers for K : GrothendieckTopology D.

                Equations
                  Instances For

                    A functor F is continuous if the precomposition with F.op sends sheaves of Type t to sheaves.

                    Instances
                      theorem CategoryTheory.Functor.isContinuous_comp' {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] {F₁ : Functor C D} {F₂ : Functor D E} {F₁₂ : Functor C E} (e : F₁.comp F₂ F₁₂) (J : GrothendieckTopology C) (K : GrothendieckTopology D) (L : GrothendieckTopology E) [F₁.IsContinuous J K] [F₂.IsContinuous K L] :
                      F₁₂.IsContinuous J L

                      To show a functor F : C ⥤ D is continuous for the topologies generated by precoverage J and K, it suffices to show that the image of every J-covering is a K-covering, if F preserves pairwise pullbacks of J-coverings.

                      The induced functor Sheaf K A ⥤ Sheaf J A given by F.op ⋙ _ if F is a continuous functor.

                      Equations
                        Instances For
                          @[simp]
                          theorem CategoryTheory.Functor.sheafPushforwardContinuous_obj_val_map {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : Functor C D) (A : Type u) [Category.{t, u} A] (J : GrothendieckTopology C) (K : GrothendieckTopology D) [F.IsContinuous J K] ( : Sheaf K A) {X✝ Y✝ : Cᵒᵖ} (f : X✝ Y✝) :
                          ((F.sheafPushforwardContinuous A J K).obj ).val.map f = .val.map (F.map f.unop).op

                          The functor F.sheafPushforwardContinuous A J K : Sheaf K A ⥤ Sheaf J A is induced by the precomposition with F.op.

                          Equations
                            Instances For

                              The functor sheafPushforwardContinuous corresponding to the identity functor identifies to the identity functor.

                              Equations
                                Instances For

                                  The composition of two pushforward functors on sheaves identifies to the pushforward for the composition of the two functors.

                                  Equations
                                    Instances For

                                      The action of a natural transformation on pushforward functors of sheaves.

                                      Equations
                                        Instances For

                                          The action of a natural isomorphism on pushforward functors of sheaves.

                                          Equations
                                            Instances For

                                              If a continuous functor between sites is isomorphic to the identity functor, then the corresponding pushforward functor on sheaves identifies to the identity functor.

                                              Equations
                                                Instances For

                                                  When we have an isomorphism F ⋙ G ≅ FG between continuous functors between sites, the composition of the pushforward functors for G and F identifies to the pushforward functor for FG.

                                                  Equations
                                                    Instances For
                                                      @[simp]
                                                      theorem CategoryTheory.Functor.sheafPushforwardContinuousComp'_inv_app_val_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] {F : Functor C D} {G : Functor D E} {FG : Functor C E} (eFG : F.comp G FG) (A : Type u) [Category.{t, u} A] (J : GrothendieckTopology C) (K : GrothendieckTopology D) (L : GrothendieckTopology E) [F.IsContinuous J K] [G.IsContinuous K L] [FG.IsContinuous J L] (X : Sheaf L A) (X✝ : Cᵒᵖ) :
                                                      ((sheafPushforwardContinuousComp' eFG A J K L).inv.app X).val.app X✝ = X.val.map (eFG.hom.app (Opposite.unop X✝)).op
                                                      @[simp]
                                                      theorem CategoryTheory.Functor.sheafPushforwardContinuousComp'_hom_app_val_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] {F : Functor C D} {G : Functor D E} {FG : Functor C E} (eFG : F.comp G FG) (A : Type u) [Category.{t, u} A] (J : GrothendieckTopology C) (K : GrothendieckTopology D) (L : GrothendieckTopology E) [F.IsContinuous J K] [G.IsContinuous K L] [FG.IsContinuous J L] (X : Sheaf L A) (X✝ : Cᵒᵖ) :
                                                      ((sheafPushforwardContinuousComp' eFG A J K L).hom.app X).val.app X✝ = X.val.map (eFG.inv.app (Opposite.unop X✝)).op