Documentation Verification Report

Grothendieck

šŸ“ Source: Mathlib/CategoryTheory/Sites/Grothendieck.lean

Statistics

MetricCount
DefinitionsGrothendieck, Z, base, g₁, gā‚‚, map, Y, base, f, fromMiddle, fromMiddleHom, map, middle, precomp, precompRelation, toMiddle, toMiddleHom, fst, mk', r, snd, bind, bindToBase, index, instCoeFunForallForallHomProp, instCoeOutSieve, instInhabited, instOrderTop, instSemilatticeInf, multifork, pullback, pullbackComp, pullbackId, shape, toMultiequalizer, Covers, RightOreCondition, atomic, copy, dense, discrete, instCompleteLattice, instDFunLikeSetSieve, instInfSet, instInhabited, instLEGrothendieckTopology, instPartialOrder, instPreorderCover, pullback, pullbackComp, pullbackId, sieves, trivial, Grothendieck
54
Theoremsext, ext_iff, map_Z, map_g₁, map_gā‚‚, w, w_assoc, base_Y, base_f, ext, ext_iff, from_middle_condition, hf, map_Y, map_f, middle_spec, precompRelation_Z, precompRelation_g₁, precompRelation_gā‚‚, precomp_Y, precomp_f, to_middle_condition, ext, ext_iff, mk'_fst, mk'_r, mk'_snd, coe_pullback, condition, ext, ext_iff, index_fst, index_left, index_right, index_snd, shape_L, shape_R, shape_fst, shape_snd, arrow_intersect, arrow_max, arrow_stable, arrow_trans, bindOfArrows, bind_covering, bot_covering, bot_covers, coe_copy, copy_eq, covering_iff_covers_id, covering_of_eq_top, covers_iff, dense_covering, discrete_eq_top, ext, ext_iff, intersection_covering, intersection_covering_iff, isGLB_sInf, le_def, mem_sInf, mem_sieves_iff_coe, pullback_mem_iff_of_isIso, pullback_obj, pullback_stable, pullback_stable', right_ore_of_pullbacks, sieves_copy, superset_covering, top_covering, top_covers, top_mem, top_mem', transitive, transitive', trivial_covering, trivial_eq_bot
77
Total131

CategoryTheory

Definitions

NameCategoryTheorems
Grothendieck šŸ“–CompData
118 mathmath: Grothendieck.base_eqToHom, Grothendieck.ιCompMap_hom_app_fiber, Functor.instHasColimitGrothendieckFunctorCompGrothendieckProj, Grothendieck.map_comp_eq, CostructuredArrow.grothendieckPrecompFunctorToComma_map_left, Grothendieck.pre_comp_map_assoc, Grothendieck.ιNatTrans_app_fiber, Grothendieck.grothendieckTypeToCat_inverse_map_base, Grothendieck.grothendieckTypeToCat_counitIso_inv_app_coe, Grothendieck.transportIso_hom_base, Grothendieck.compAsSmallFunctorEquivalenceFunctor_map_fiber, Grothendieck.grothendieckTypeToCatFunctor_obj_snd, Grothendieck.functor_comp_forget, Grothendieck.grothendieckTypeToCat_unitIso_hom_app_fiber, Grothendieck.isoMk_inv_base, Grothendieck.comp_base, Grothendieck.isoMk_inv_fiber, CostructuredArrow.grothendieckPrecompFunctorEquivalence_functor, Functor.ι_colimitIsoColimitGrothendieck_inv_assoc, CostructuredArrow.commaToGrothendieckPrecompFunctor_map_fiber, CostructuredArrow.commaToGrothendieckPrecompFunctor_obj_fiber, Grothendieck.grothendieckTypeToCat_unitIso_inv_app_fiber, Limits.fiberwiseColimitLimitIso_hom_app, CostructuredArrow.ιCompGrothendieckProj_inv_app, Grothendieck.id_fiber, Functor.hasColimit_map_comp_ι_comp_grothendieckProj, Functor.ι_colimitIsoColimitGrothendieck_hom, Limits.fiberwiseColim_obj, CostructuredArrow.grothendieckPrecompFunctorToComma_obj_right, CostructuredArrow.commaToGrothendieckPrecompFunctor_map_base, Grothendieck.ιNatTrans_app_base, Grothendieck.comp_fiber, Grothendieck.map_map, Grothendieck.grothendieckTypeToCat_unitIso_inv_app_base, Grothendieck.ιCompMap_inv_app_fiber, Grothendieck.grothendieckTypeToCat_functor_obj_fst, Grothendieck.grothendieckTypeToCat_unitIso_hom_app_base, CostructuredArrow.ιCompGrothendieckPrecompFunctorToCommaCompFst_inv_app, Grothendieck.fiber_eqToHom, Limits.preservesLimitsOfShape_colim_grothendieck, Grothendieck.eqToHom_eq, CostructuredArrow.grothendieckPrecompFunctorToComma_obj_left, Grothendieck.compAsSmallFunctorEquivalenceFunctor_obj_fiber, Grothendieck.grothendieckTypeToCat_inverse_obj_base, Functor.ι_colimitIsoColimitGrothendieck_hom_assoc, Grothendieck.grothendieckTypeToCatFunctor_map_coe, Grothendieck.compAsSmallFunctorEquivalenceInverse_obj_fiber, Grothendieck.pre_map_fiber, CostructuredArrow.mapCompιCompGrothendieckProj_inv_app, Grothendieck.map_id_eq, Grothendieck.forget_obj, instIsFilteredOrEmptyGrothendieckOfαCategoryObjCat, Grothendieck.grothendieckTypeToCat_counitIso_hom_app_coe, Grothendieck.compAsSmallFunctorEquivalence_functor, Grothendieck.id_base, CostructuredArrow.grothendieckPrecompFunctorEquivalence_unitIso, Limits.fiberwiseColim_map_app, Limits.fiberwiseColimitLimitIso_inv_app, Grothendieck.pre_obj_base, CostructuredArrow.grothendieckProj_map, Grothendieck.grothendieckTypeToCatFunctor_obj_fst, Grothendieck.compAsSmallFunctorEquivalence_inverse, Grothendieck.pre_comp_map, Grothendieck.isoMk_hom_base, CostructuredArrow.grothendieckPrecompFunctorEquivalence_inverse, Grothendieck.map_obj_fiber, Grothendieck.final_map, Grothendieck.compAsSmallFunctorEquivalenceFunctor_obj_base, Grothendieck.transportIso_inv_base, Grothendieck.compAsSmallFunctorEquivalenceFunctor_map_base, Grothendieck.ιCompMap_inv_app_base, Limits.fiberwiseColimCompEvaluationIso_hom_app, Grothendieck.pre_comp, Grothendieck.functorFrom_obj, Grothendieck.transportIso_inv_fiber, Grothendieck.map_obj, Grothendieck.compAsSmallFunctorEquivalenceInverse_obj_base, Limits.fiberwiseColimCompColimIso_hom_app, CostructuredArrow.grothendieckPrecompFunctorEquivalence_counitIso, CostructuredArrow.grothendieckProj_obj, Grothendieck.map_obj_base, Functor.leftKanExtensionIsoFiberwiseColimit_hom_app, Grothendieck.final_pre, Grothendieck.compAsSmallFunctorEquivalenceInverse_map_fiber, Grothendieck.compAsSmallFunctorEquivalence_unitIso, Grothendieck.grothendieckTypeToCat_inverse_obj_fiber_as, Limits.fiberwiseColimCompColimIso_inv_app, CostructuredArrow.mapCompιCompGrothendieckProj_hom_app, Limits.fiberwiseColimCompEvaluationIso_inv_app, Grothendieck.functorFrom_map, Limits.hasColimitsOfShape_grothendieck, CostructuredArrow.ιCompGrothendieckPrecompFunctorToCommaCompFst_hom_app, Grothendieck.map_map_fiber, Grothendieck.map_map_base, Grothendieck.ι_obj, CostructuredArrow.grothendieckPrecompFunctorToComma_map_right, Grothendieck.ιCompMap_hom_app_base, Grothendieck.compAsSmallFunctorEquivalenceInverse_map_base, Grothendieck.pre_obj_fiber, Grothendieck.grothendieckTypeToCatInverse_obj_base, CostructuredArrow.ιCompGrothendieckProj_hom_app, Grothendieck.pre_id, Grothendieck.grothendieckTypeToCatInverse_map_base, Grothendieck.grothendieckTypeToCat_functor_map_coe, instIsFilteredGrothendieckOfαCategoryObjCat, Grothendieck.isoMk_hom_fiber, Grothendieck.grothendieckTypeToCat_functor_obj_snd, CostructuredArrow.commaToGrothendieckPrecompFunctor_obj_base, Grothendieck.compAsSmallFunctorEquivalence_counitIso, Functor.ι_colimitIsoColimitGrothendieck_inv, Grothendieck.grothendieckTypeToCatInverse_obj_fiber_as, Grothendieck.forget_map, Functor.leftKanExtensionIsoFiberwiseColimit_inv_app, CostructuredArrow.grothendieckPrecompFunctorToComma_obj_hom, Grothendieck.transportIso_hom_fiber, Grothendieck.pre_map_base, Grothendieck.ι_map, Grothendieck.faithful_ι

CategoryTheory.GrothendieckTopology

Definitions

NameCategoryTheorems
Covers šŸ“–MathDef
7 mathmath: bot_covers, close_apply, arrow_max, covering_iff_covers_id, covers_iff_mem_of_isClosed, top_covers, covers_iff
RightOreCondition šŸ“–MathDef
1 mathmath: right_ore_of_pullbacks
atomic šŸ“–CompOp—
copy šŸ“–CompOp
3 mathmath: sieves_copy, coe_copy, copy_eq
dense šŸ“–CompOp
1 mathmath: dense_covering
discrete šŸ“–CompOp
1 mathmath: discrete_eq_top
instCompleteLattice šŸ“–CompOp
14 mathmath: CategoryTheory.sheafBotEquivalence_functor, CategoryTheory.Presieve.isSheaf_bot, bot_covers, CategoryTheory.sheafBotEquivalence_inverse_map_val, discrete_eq_top, CategoryTheory.sheafBotEquivalence_unitIso, CategoryTheory.sheafBotEquivalence_inverse_obj_val, trivial_eq_bot, bot_covering, CategoryTheory.Presheaf.isSheaf_bot, CategoryTheory.Pretopology.toGrothendieck_bot, top_covers, CategoryTheory.sheafBotEquivalence_counitIso, top_covering
instDFunLikeSetSieve šŸ“–CompOp
89 mathmath: AlgebraicGeometry.Scheme.bot_mem_grothendieckTopology, mem_toPretopology, ext_iff, AlgebraicGeometry.Scheme.mem_grothendieckTopology_iff, OneHypercover.memā‚€, CategoryTheory.Functor.OneHypercoverDenseData.mem₁, CategoryTheory.Functor.functorPushforward_imageSieve_mem, CategoryTheory.extensiveTopology.mem_sieves_iff_contains_colimit_cofan, CategoryTheory.Functor.functorPushforward_mem_iff, trivial_covering, intersection_covering_iff, AlgebraicGeometry.Scheme.mem_jointlySurjectiveTopology_iff_jointlySurjectivePretopology, CategoryTheory.Presheaf.isLocallyInjective_iff_equalizerSieve_mem_imp, OneHypercover.mem_sieve₁', CategoryTheory.Pretopology.mem_toGrothendieck, Cover.preOneHypercover_sieveā‚€, CategoryTheory.Coverage.mem_toGrothendieck_sieves_of_superset, top_mem, CategoryTheory.Functor.IsLocallyFull.functorPushforward_imageSieve_mem, CategoryTheory.Functor.OneHypercoverDenseData.mem₁₀, CategoryTheory.Functor.is_cover_of_isCoverDense, mem_over_iff, CategoryTheory.regularTopology.mem_sieves_iff_hasEffectiveEpi, coversTop_iff_of_isTerminal, CategoryTheory.Functor.functorPushforward_equalizer_mem, CategoryTheory.Functor.IsDenseSubsite.equalizer_mem, OneHypercoverFamily.IsSheafIff.fac, close_eq_top_iff_mem, coe_copy, AlgebraicGeometry.Scheme.AffineZariskiSite.generate_presieveOfSections_mem_grothendieckTopology, le_def, AlgebraicGeometry.Scheme.mem_overGrothendieckTopology, Cover.Arrow.hf, CategoryTheory.Precoverage.mem_toGrothendieck_iff, mem_sInf, OneHypercover.IsPreservedBy.mem₁, CategoryTheory.generate_discretePresieve_mem, CategoryTheory.coherentTopology.mem_sieves_iff_hasEffectiveEpiFamily, CategoryTheory.Precoverage.generate_mem_toGrothendieck, CategoryTheory.Functor.LocallyCoverDense.functorPushforward_functorPullback_mem, CategoryTheory.Functor.pushforward_cover_iff_cover_pullback, CategoryTheory.Functor.IsDenseSubsite.functorPushforward_mem_iff, CategoryTheory.Precoverage.mem_toGrothendieck_iff_of_isStableUnderComposition, CategoryTheory.Presheaf.IsLocallyInjective.equalizerSieve_mem, Cover.condition, CategoryTheory.Functor.inducedTopology_sieves, CategoryTheory.ofGrothendieck_iff, dense_covering, OneHypercover.IsPreservedBy.memā‚€, CategoryTheory.Functor.OneHypercoverDenseData.sieve_mem, OneHypercoverFamily.IsSheafIff.fac', CategoryTheory.Functor.OneHypercoverDenseData.memā‚€, CategoryTheory.Functor.IsLocallyFaithful.functorPushforward_equalizer_mem, OneHypercoverFamily.IsSheafIff.fac'_assoc, bot_covering, mem_sieves_iff_coe, CategoryTheory.Presheaf.IsLocallySurjective.imageSieve_mem, CategoryTheory.Coverage.mem_toGrothendieck, CategoryTheory.Presheaf.equalizerSieve_mem, CategoryTheory.coherentTopology.mem_sieves_of_hasEffectiveEpiFamily, Cover.ext_iff, mem_toPrecoverage_iff, TopCat.Presheaf.presieveOfCovering.mem_grothendieckTopology, pullback_mem_iff_of_isIso, covering_iff_covers_id, AlgebraicGeometry.Scheme.AffineZariskiSite.mem_grothendieckTopology, CategoryTheory.Functor.IsCoverDense.is_cover, AlgebraicGeometry.Scheme.mem_smallGrothendieckTopology, CategoryTheory.regularTopology.mem_sieves_of_hasEffectiveEpi, Cover.Arrow.to_middle_condition, CategoryTheory.regularTopology.exists_effectiveEpi_iff_mem_induced, AlgebraicGeometry.Scheme.grothendieckTopology_cover, CategoryTheory.coherentTopology.exists_effectiveEpiFamily_iff_mem_induced, covers_iff, CategoryTheory.Functor.IsCoverDense.functorPullback_pushforward_covering, Cover.Arrow.from_middle_condition, CategoryTheory.Functor.mem_inducedTopology_sieves_iff, CategoryTheory.Pretopology.mem_ofGrothendieck, AlgebraicGeometry.Scheme.mem_toGrothendieck_smallPretopology, mem_toCoverage_iff, AlgebraicGeometry.Scheme.AffineZariskiSite.mem_grothendieckTopology_iff_sectionsOfPresieve, CategoryTheory.Functor.IsDenseSubsite.imageSieve_mem, CategoryTheory.Presheaf.imageSieve_mem, Cover.coe_pullback, CategoryTheory.discreteSieve_mem, covering_of_eq_top, OneHypercover.mem₁, AlgebraicGeometry.Scheme.Cover.mem_grothendieckTopology, top_covering
instInfSet šŸ“–CompOp
5 mathmath: CategoryTheory.Coverage.toGrothendieck_eq_sInf, mem_sInf, isGLB_sInf, CategoryTheory.Precoverage.toGrothendieck_eq_sInf, CategoryTheory.Pretopology.sInf_ofGrothendieck
instInhabited šŸ“–CompOp—
instLEGrothendieckTopology šŸ“–CompOp
12 mathmath: CategoryTheory.Precoverage.toGrothendieck_le_iff_le_toPrecoverage, AlgebraicGeometry.Scheme.zariskiTopology_le_etaleTopology, CategoryTheory.Pretopology.toGrothendieck_mono, CategoryTheory.Precoverage.toGrothendieck_mono, CategoryTheory.le_topology_of_closedSieves_isSheaf, AlgebraicGeometry.Scheme.grothendieckTopology_le_grothendieckTopology, le_def, AlgebraicGeometry.Scheme.grothendieckTopology_monotone, isGLB_sInf, CategoryTheory.Sheaf.le_finestTopology, Subcanonical.le_canonical, le_canonical
instPartialOrder šŸ“–CompOp—
instPreorderCover šŸ“–CompOp
47 mathmath: coneCompEvaluationOfConeCompDiagramFunctorCompEvaluation_pt, liftToDiagramLimitObjAux_fac, diagram_obj, liftToDiagramLimitObjAux_fac_assoc, Opens.mayerVietorisSquare_Xā‚ƒ, CondensedMod.isDiscrete_tfae, CondensedMod.LocallyConstant.instFullModuleCatSheafCompHausCoherentTopologyConstantSheaf, preservesLimitsOfShape_diagramFunctor, diagramCompIso_hom_ι, CondensedMod.LocallyConstant.instFaithfulModuleCatCondensedDiscrete, CategoryTheory.Meq.pullback_refine, diagramCompIso_hom_ι_assoc, CategoryTheory.Presheaf.isLocallySurjective_toSheafify, CondensedMod.isDiscrete_iff_isDiscrete_forget, CondensedMod.LocallyConstant.instFullModuleCatCondensedDiscrete, CategoryTheory.Presheaf.isLocallyInjective_toSheafify, Opens.mayerVietorisSquare_Xā‚‚, Opens.coe_mayerVietorisSquare_X₁, diagram_map, diagramPullback_app, CondensedMod.LocallyConstant.instFaithfulSheafCompHausCoherentTopologyTypeConstantSheaf, CondensedSet.isDiscrete_tfae, CondensedMod.LocallyConstant.instIsIsoCondensedSetMapForgetAppCondensedModuleCatCounitDiscreteUnderlyingAdjObjFunctor, CondensedSet.LocallyConstant.instFaithfulCondensedTypeDiscrete, diagramFunctor_map, diagramFunctor_obj, CondensedSet.LocallyConstant.instFullCondensedTypeDiscrete, CategoryTheory.Presheaf.isLocallySurjective_toPlus, diagramNatTrans_app, preservesLimits_diagramFunctor, coneCompEvaluationOfConeCompDiagramFunctorCompEvaluation_Ļ€_app, CategoryTheory.Meq.refine_apply, Opens.mayerVietorisSquare'_toSquare, Opens.coe_mayerVietorisSquare_Xā‚„, CondensedMod.LocallyConstant.instFullSheafCompHausCoherentTopologyTypeConstantSheaf, diagramNatTrans_id, AlgebraicGeometry.instIsQuasicoherentOpensCarrierCarrierCommRingCatSpecTilde, CategoryTheory.Functor.SmallCategories.instPreservesFiniteLimitsSheafSheafPullbackOfRepresentablyFlat, diagramNatTrans_zero, preservesLimit_diagramFunctor, CategoryTheory.Presheaf.isLocallyInjective_toPlus, CondensedMod.LocallyConstant.instFaithfulModuleCatSheafCompHausCoherentTopologyConstantSheaf, pullback_obj, diagramNatTrans_comp, Condensed.instAB4CondensedMod, AlgebraicGeometry.instIsIsoModulesSpecOfCarrierFromTildeĪ“FreeOpensCarrierCarrierCommRingCat, CategoryTheory.Meq.pullback_apply
pullback šŸ“–CompOp
5 mathmath: CategoryTheory.Meq.pullback_refine, Plus.res_mk_eq_mk_pullback, diagramPullback_app, pullback_obj, CategoryTheory.Meq.pullback_apply
pullbackComp šŸ“–CompOp—
pullbackId šŸ“–CompOp—
sieves šŸ“–CompOp
4 mathmath: CategoryTheory.topologyOfClosureOperator_sieves, CategoryTheory.Functor.inducedTopology_sieves, mem_sieves_iff_coe, top_mem'
trivial šŸ“–CompOp
2 mathmath: trivial_covering, trivial_eq_bot

Theorems

NameKindAssumesProvesValidatesDepends On
arrow_intersect šŸ“–mathematicalCoversCategoryTheory.Sieve
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.Sieve.instCompleteLattice
—CategoryTheory.Sieve.pullback_inter
arrow_max šŸ“–mathematicalCategoryTheory.Sieve.arrowsCovers—Covers.eq_1
CategoryTheory.Sieve.mem_iff_pullback_eq_top
top_mem
arrow_stable šŸ“–mathematicalCoversCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
—covers_iff
CategoryTheory.Sieve.pullback_comp
arrow_trans šŸ“–ā€”Covers——transitive
CategoryTheory.Sieve.pullback_comp
bindOfArrows šŸ“–mathematicalCategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
instDFunLikeSetSieve
CategoryTheory.Sieve.ofArrows
CategoryTheory.Sieve.generate
CategoryTheory.Presieve.bindOfArrows—superset_covering
CategoryTheory.Presieve.bind_ofArrows_le_bindOfArrows
bind_covering
pullback_stable
bind_covering šŸ“–mathematicalCategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
instDFunLikeSetSieve
CategoryTheory.Sieve.bind
CategoryTheory.Sieve.arrows
—transitive
superset_covering
CategoryTheory.Sieve.le_pullback_bind
bot_covering šŸ“–mathematical—CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
instDFunLikeSetSieve
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Top.top
OrderTop.toTop
CategoryTheory.Sieve.instCompleteLattice
BoundedOrder.toOrderTop
—trivial_covering
bot_covers šŸ“–mathematical—Covers
Bot.bot
CategoryTheory.GrothendieckTopology
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
CategoryTheory.Sieve.arrows
—covers_iff
bot_covering
CategoryTheory.Sieve.mem_iff_pullback_eq_top
coe_copy šŸ“–mathematicalsievesDFunLike.coe
CategoryTheory.GrothendieckTopology
Set
CategoryTheory.Sieve
instDFunLikeSetSieve
copy
——
copy_eq šŸ“–mathematicalsievescopy—ext
covering_iff_covers_id šŸ“–mathematical—CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
instDFunLikeSetSieve
Covers
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
—CategoryTheory.Sieve.pullback_id
covering_of_eq_top šŸ“–mathematicalTop.top
CategoryTheory.Sieve
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.Sieve.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
instDFunLikeSetSieve
—top_mem
covers_iff šŸ“–mathematical—Covers
CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
instDFunLikeSetSieve
CategoryTheory.Sieve.pullback
——
dense_covering šŸ“–mathematical—CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
instDFunLikeSetSieve
dense
CategoryTheory.Sieve.arrows
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
——
discrete_eq_top šŸ“–mathematical—discrete
Top.top
CategoryTheory.GrothendieckTopology
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
——
ext šŸ“–ā€”DFunLike.coe
CategoryTheory.GrothendieckTopology
Set
CategoryTheory.Sieve
instDFunLikeSetSieve
——DFunLike.coe_injective
ext_iff šŸ“–mathematical—DFunLike.coe
CategoryTheory.GrothendieckTopology
Set
CategoryTheory.Sieve
instDFunLikeSetSieve
—ext
intersection_covering šŸ“–mathematicalCategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
instDFunLikeSetSieve
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.Sieve.instCompleteLattice
—transitive
CategoryTheory.Sieve.pullback_inter
CategoryTheory.Sieve.pullback_eq_top_of_mem
inf_of_le_right
intersection_covering_iff šŸ“–mathematical—CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
instDFunLikeSetSieve
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.Sieve.instCompleteLattice
—superset_covering
inf_le_left
inf_le_right
intersection_covering
isGLB_sInf šŸ“–mathematical—IsGLB
CategoryTheory.GrothendieckTopology
instLEGrothendieckTopology
InfSet.sInf
instInfSet
—IsGLB.of_image
isGLB_sInf
le_def šŸ“–mathematical—CategoryTheory.GrothendieckTopology
instLEGrothendieckTopology
Pi.hasLe
Set
CategoryTheory.Sieve
Set.instLE
DFunLike.coe
instDFunLikeSetSieve
——
mem_sInf šŸ“–mathematical—CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
instDFunLikeSetSieve
InfSet.sInf
instInfSet
—Set.iInter_coe_set
Set.iInter_congr_Prop
Set.iInter_exists
Set.biInter_and'
Set.iInter_iInter_eq_right
mem_sieves_iff_coe šŸ“–mathematical—CategoryTheory.Sieve
Set
Set.instMembership
sieves
DFunLike.coe
CategoryTheory.GrothendieckTopology
instDFunLikeSetSieve
——
pullback_mem_iff_of_isIso šŸ“–mathematical—CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
instDFunLikeSetSieve
CategoryTheory.Sieve.pullback
—CategoryTheory.Sieve.pullback_comp
CategoryTheory.IsIso.inv_hom_id
CategoryTheory.Sieve.pullback_id
pullback_stable
pullback_obj šŸ“–mathematical—CategoryTheory.Functor.obj
Cover
Preorder.smallCategory
instPreorderCover
pullback
Cover.pullback
——
pullback_stable šŸ“–mathematicalCategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
instDFunLikeSetSieve
CategoryTheory.Sieve.pullback—pullback_stable'
pullback_stable' šŸ“–mathematicalCategoryTheory.Sieve
Set
Set.instMembership
sieves
CategoryTheory.Sieve.pullback——
right_ore_of_pullbacks šŸ“–mathematical—RightOreCondition—CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.pullback.condition
sieves_copy šŸ“–mathematicalsievescopy——
superset_covering šŸ“–ā€”CategoryTheory.Sieve
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.Sieve.instCompleteLattice
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
instDFunLikeSetSieve
——transitive
covering_of_eq_top
top_le_iff
CategoryTheory.Sieve.pullback_eq_top_of_mem
CategoryTheory.Sieve.pullback_monotone
top_covering šŸ“–mathematical—CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
instDFunLikeSetSieve
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
——
top_covers šŸ“–mathematical—Covers
Top.top
CategoryTheory.GrothendieckTopology
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
——
top_mem šŸ“–mathematical—CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
instDFunLikeSetSieve
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.Sieve.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
—top_mem'
top_mem' šŸ“–mathematical—CategoryTheory.Sieve
Set
Set.instMembership
sieves
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.Sieve.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
——
transitive šŸ“–ā€”CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
instDFunLikeSetSieve
CategoryTheory.Sieve.pullback
——transitive'
transitive' šŸ“–ā€”CategoryTheory.Sieve
Set
Set.instMembership
sieves
CategoryTheory.Sieve.pullback
———
trivial_covering šŸ“–mathematical—CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
instDFunLikeSetSieve
trivial
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.Sieve.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
—Set.mem_singleton_iff
trivial_eq_bot šŸ“–mathematical—trivial
Bot.bot
CategoryTheory.GrothendieckTopology
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
——

CategoryTheory.GrothendieckTopology.Cover

Definitions

NameCategoryTheorems
bind šŸ“–CompOp
2 mathmath: Arrow.to_middle_condition, Arrow.middle_spec
bindToBase šŸ“–CompOp—
index šŸ“–CompOp
49 mathmath: index_left, index_fst, CategoryTheory.RanIsSheafOfIsCocontinuous.liftAux_map', Opens.mayerVietorisSquare_Xā‚ƒ, CondensedMod.isDiscrete_tfae, CondensedMod.LocallyConstant.instFullModuleCatSheafCompHausCoherentTopologyConstantSheaf, CondensedMod.LocallyConstant.instFaithfulModuleCatCondensedDiscrete, CategoryTheory.Presheaf.isLocallySurjective_toSheafify, CondensedMod.isDiscrete_iff_isDiscrete_forget, CondensedMod.LocallyConstant.instFullModuleCatCondensedDiscrete, CategoryTheory.Presheaf.isLocallyInjective_toSheafify, CategoryTheory.GrothendieckTopology.OneHypercoverFamily.IsSheafIff.fac, CategoryTheory.RanIsSheafOfIsCocontinuous.fac_assoc, multicospanComp_inv_app, CategoryTheory.RanIsSheafOfIsCocontinuous.fac', Opens.mayerVietorisSquare_Xā‚‚, Opens.coe_mayerVietorisSquare_X₁, CategoryTheory.Presheaf.isSheaf_iff_multifork, CondensedMod.LocallyConstant.instFaithfulSheafCompHausCoherentTopologyTypeConstantSheaf, CategoryTheory.GrothendieckTopology.OneHypercoverFamily.IsSheafIff.fac', CategoryTheory.GrothendieckTopology.OneHypercoverFamily.IsSheafIff.fac'_assoc, multicospanComp_hom_app, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff.fac_assoc, CondensedSet.isDiscrete_tfae, AlgebraicGeometry.instIsIsoModulesSpecOfCarrierFromTildeĪ“UnitOpensCarrierCarrierCommRingCatRingCatSheaf, CondensedMod.LocallyConstant.instIsIsoCondensedSetMapForgetAppCondensedModuleCatCounitDiscreteUnderlyingAdjObjFunctor, CondensedSet.LocallyConstant.instFaithfulCondensedTypeDiscrete, CondensedSet.LocallyConstant.instFullCondensedTypeDiscrete, CategoryTheory.Presheaf.isLocallySurjective_toPlus, CategoryTheory.RanIsSheafOfIsCocontinuous.fac, index_right, Opens.mayerVietorisSquare'_toSquare, index_snd, Opens.coe_mayerVietorisSquare_Xā‚„, CondensedMod.LocallyConstant.instFullSheafCompHausCoherentTopologyTypeConstantSheaf, CategoryTheory.Meq.equiv_symm_eq_apply, AlgebraicGeometry.instIsQuasicoherentOpensCarrierCarrierCommRingCatSpecTilde, CategoryTheory.Sheaf.instIsRightAdjointSheafComposeOfHasWeakSheafify, CategoryTheory.Functor.SmallCategories.instPreservesFiniteLimitsSheafSheafPullbackOfRepresentablyFlat, CategoryTheory.Presheaf.isLocallyInjective_toPlus, CondensedMod.LocallyConstant.instFaithfulModuleCatSheafCompHausCoherentTopologyConstantSheaf, CategoryTheory.RanIsSheafOfIsCocontinuous.liftAux_map, CategoryTheory.Meq.equiv_apply, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff.lift_map, Condensed.instAB4CondensedMod, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff.lift_map_assoc, AlgebraicGeometry.instIsIsoModulesSpecOfCarrierFromTildeĪ“FreeOpensCarrierCarrierCommRingCat, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff.liftAux_fac, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff.fac
instCoeFunForallForallHomProp šŸ“–CompOp—
instCoeOutSieve šŸ“–CompOp—
instInhabited šŸ“–CompOp
11 mathmath: CondensedMod.isDiscrete_tfae, CondensedMod.LocallyConstant.instFullModuleCatSheafCompHausCoherentTopologyConstantSheaf, CondensedMod.LocallyConstant.instFaithfulModuleCatCondensedDiscrete, CondensedMod.isDiscrete_iff_isDiscrete_forget, CondensedMod.LocallyConstant.instFullModuleCatCondensedDiscrete, CondensedMod.LocallyConstant.instIsIsoCondensedSetMapForgetAppCondensedModuleCatCounitDiscreteUnderlyingAdjObjFunctor, AlgebraicGeometry.instIsQuasicoherentOpensCarrierCarrierCommRingCatSpecTilde, CategoryTheory.Functor.SmallCategories.instPreservesFiniteLimitsSheafSheafPullbackOfRepresentablyFlat, CondensedMod.LocallyConstant.instFaithfulModuleCatSheafCompHausCoherentTopologyConstantSheaf, Condensed.instAB4CondensedMod, AlgebraicGeometry.instIsIsoModulesSpecOfCarrierFromTildeΓFreeOpensCarrierCarrierCommRingCat
instOrderTop šŸ“–CompOp
1 mathmath: CategoryTheory.GrothendieckTopology.Plus.toPlus_eq_mk
instSemilatticeInf šŸ“–CompOp
11 mathmath: CondensedMod.isDiscrete_tfae, CondensedMod.LocallyConstant.instFullModuleCatSheafCompHausCoherentTopologyConstantSheaf, CondensedMod.LocallyConstant.instFaithfulModuleCatCondensedDiscrete, CondensedMod.isDiscrete_iff_isDiscrete_forget, CondensedMod.LocallyConstant.instFullModuleCatCondensedDiscrete, CondensedMod.LocallyConstant.instIsIsoCondensedSetMapForgetAppCondensedModuleCatCounitDiscreteUnderlyingAdjObjFunctor, AlgebraicGeometry.instIsQuasicoherentOpensCarrierCarrierCommRingCatSpecTilde, CategoryTheory.Functor.SmallCategories.instPreservesFiniteLimitsSheafSheafPullbackOfRepresentablyFlat, CondensedMod.LocallyConstant.instFaithfulModuleCatSheafCompHausCoherentTopologyConstantSheaf, Condensed.instAB4CondensedMod, AlgebraicGeometry.instIsIsoModulesSpecOfCarrierFromTildeΓFreeOpensCarrierCarrierCommRingCat
multifork šŸ“–CompOp
1 mathmath: CategoryTheory.Presheaf.isSheaf_iff_multifork
pullback šŸ“–CompOp
4 mathmath: Arrow.base_Y, Arrow.base_f, CategoryTheory.GrothendieckTopology.pullback_obj, coe_pullback
pullbackComp šŸ“–CompOp—
pullbackId šŸ“–CompOp—
shape šŸ“–CompOp
52 mathmath: index_left, index_fst, CategoryTheory.RanIsSheafOfIsCocontinuous.liftAux_map', Opens.mayerVietorisSquare_Xā‚ƒ, shape_snd, CondensedMod.isDiscrete_tfae, CondensedMod.LocallyConstant.instFullModuleCatSheafCompHausCoherentTopologyConstantSheaf, CondensedMod.LocallyConstant.instFaithfulModuleCatCondensedDiscrete, CategoryTheory.Presheaf.isLocallySurjective_toSheafify, CondensedMod.isDiscrete_iff_isDiscrete_forget, CondensedMod.LocallyConstant.instFullModuleCatCondensedDiscrete, shape_fst, CategoryTheory.Presheaf.isLocallyInjective_toSheafify, CategoryTheory.GrothendieckTopology.OneHypercoverFamily.IsSheafIff.fac, CategoryTheory.RanIsSheafOfIsCocontinuous.fac_assoc, multicospanComp_inv_app, CategoryTheory.RanIsSheafOfIsCocontinuous.fac', Opens.mayerVietorisSquare_Xā‚‚, Opens.coe_mayerVietorisSquare_X₁, CategoryTheory.Presheaf.isSheaf_iff_multifork, CondensedMod.LocallyConstant.instFaithfulSheafCompHausCoherentTopologyTypeConstantSheaf, CategoryTheory.GrothendieckTopology.OneHypercoverFamily.IsSheafIff.fac', CategoryTheory.GrothendieckTopology.OneHypercoverFamily.IsSheafIff.fac'_assoc, multicospanComp_hom_app, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff.fac_assoc, CondensedSet.isDiscrete_tfae, AlgebraicGeometry.instIsIsoModulesSpecOfCarrierFromTildeĪ“UnitOpensCarrierCarrierCommRingCatRingCatSheaf, CondensedMod.LocallyConstant.instIsIsoCondensedSetMapForgetAppCondensedModuleCatCounitDiscreteUnderlyingAdjObjFunctor, CondensedSet.LocallyConstant.instFaithfulCondensedTypeDiscrete, CondensedSet.LocallyConstant.instFullCondensedTypeDiscrete, CategoryTheory.Presheaf.isLocallySurjective_toPlus, CategoryTheory.RanIsSheafOfIsCocontinuous.fac, index_right, Opens.mayerVietorisSquare'_toSquare, index_snd, Opens.coe_mayerVietorisSquare_Xā‚„, CondensedMod.LocallyConstant.instFullSheafCompHausCoherentTopologyTypeConstantSheaf, AlgebraicGeometry.instIsQuasicoherentOpensCarrierCarrierCommRingCatSpecTilde, CategoryTheory.Sheaf.instIsRightAdjointSheafComposeOfHasWeakSheafify, CategoryTheory.Functor.SmallCategories.instPreservesFiniteLimitsSheafSheafPullbackOfRepresentablyFlat, CategoryTheory.Presheaf.isLocallyInjective_toPlus, CondensedMod.LocallyConstant.instFaithfulModuleCatSheafCompHausCoherentTopologyConstantSheaf, CategoryTheory.RanIsSheafOfIsCocontinuous.liftAux_map, CategoryTheory.Meq.condition, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff.lift_map, Condensed.instAB4CondensedMod, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff.lift_map_assoc, AlgebraicGeometry.instIsIsoModulesSpecOfCarrierFromTildeĪ“FreeOpensCarrierCarrierCommRingCat, shape_L, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff.liftAux_fac, shape_R, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff.fac
toMultiequalizer šŸ“–CompOp
1 mathmath: CategoryTheory.Presheaf.isSheaf_iff_multiequalizer

Theorems

NameKindAssumesProvesValidatesDepends On
coe_pullback šŸ“–mathematical—CategoryTheory.Sieve.arrows
CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
pullback
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
——
condition šŸ“–mathematical—CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
——
ext šŸ“–ā€”CategoryTheory.Sieve.arrows
CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
——CategoryTheory.Sieve.ext
ext_iff šŸ“–mathematical—CategoryTheory.Sieve.arrows
CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
—ext
index_fst šŸ“–mathematical—CategoryTheory.Limits.MulticospanIndex.fst
shape
index
CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
Opposite.op
Arrow.Y
CategoryTheory.Limits.MulticospanShape.fst
Arrow.Relation.Z
Relation.fst
Relation.snd
Relation.r
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Arrow.Relation.g₁
——
index_left šŸ“–mathematical—CategoryTheory.Limits.MulticospanIndex.left
shape
index
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
Arrow.Y
——
index_right šŸ“–mathematical—CategoryTheory.Limits.MulticospanIndex.right
shape
index
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
Arrow.Relation.Z
Relation.fst
Relation.snd
Relation.r
——
index_snd šŸ“–mathematical—CategoryTheory.Limits.MulticospanIndex.snd
shape
index
CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
Opposite.op
Arrow.Y
CategoryTheory.Limits.MulticospanShape.snd
Arrow.Relation.Z
Relation.fst
Relation.snd
Relation.r
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Arrow.Relation.gā‚‚
——
shape_L šŸ“–mathematical—CategoryTheory.Limits.MulticospanShape.L
shape
Arrow
——
shape_R šŸ“–mathematical—CategoryTheory.Limits.MulticospanShape.R
shape
Relation
——
shape_fst šŸ“–mathematical—CategoryTheory.Limits.MulticospanShape.fst
shape
Relation.fst
——
shape_snd šŸ“–mathematical—CategoryTheory.Limits.MulticospanShape.snd
shape
Relation.snd
——

CategoryTheory.GrothendieckTopology.Cover.Arrow

Definitions

NameCategoryTheorems
Y šŸ“–CompOp
34 mathmath: CategoryTheory.GrothendieckTopology.coneCompEvaluationOfConeCompDiagramFunctorCompEvaluation_pt, CategoryTheory.GrothendieckTopology.Cover.index_left, CategoryTheory.GrothendieckTopology.liftToDiagramLimitObjAux_fac, CategoryTheory.GrothendieckTopology.Cover.index_fst, CategoryTheory.GrothendieckTopology.liftToDiagramLimitObjAux_fac_assoc, precompRelation_Z, ext_iff, base_Y, map_Y, Relation.ext_iff, CategoryTheory.RanIsSheafOfIsCocontinuous.fac_assoc, CategoryTheory.GrothendieckTopology.Cover.multicospanComp_inv_app, hf, CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff.fac_assoc, CategoryTheory.GrothendieckTopology.Cover.preOneHypercover_X, CategoryTheory.GrothendieckTopology.diagramNatTrans_app, CategoryTheory.Meq.mk_apply, CategoryTheory.RanIsSheafOfIsCocontinuous.fac, CategoryTheory.GrothendieckTopology.coneCompEvaluationOfConeCompDiagramFunctorCompEvaluation_Ļ€_app, precomp_f, CategoryTheory.Meq.refine_apply, CategoryTheory.GrothendieckTopology.Cover.index_snd, to_middle_condition, base_f, precomp_Y, precompRelation_g₁, CategoryTheory.Meq.condition, CategoryTheory.GrothendieckTopology.Plus.toPlus_apply, middle_spec, Relation.w, CategoryTheory.Meq.pullback_apply, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff.fac, Relation.w_assoc
base šŸ“–CompOp
3 mathmath: base_Y, CategoryTheory.GrothendieckTopology.diagramPullback_app, base_f
f šŸ“–CompOp
19 mathmath: CategoryTheory.Presheaf.IsSheaf.amalgamate_map, ext_iff, CategoryTheory.GrothendieckTopology.Cover.preOneHypercover_f, map_f, CategoryTheory.RanIsSheafOfIsCocontinuous.fac_assoc, hf, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff.fac_assoc, CategoryTheory.Presheaf.IsSheaf.amalgamate_map_assoc, CategoryTheory.Meq.mk_apply, CategoryTheory.RanIsSheafOfIsCocontinuous.fac, precomp_f, CategoryTheory.Meq.refine_apply, base_f, CategoryTheory.GrothendieckTopology.Plus.toPlus_apply, middle_spec, Relation.w, CategoryTheory.Meq.pullback_apply, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff.fac, Relation.w_assoc
fromMiddle šŸ“–CompOp
1 mathmath: to_middle_condition
fromMiddleHom šŸ“–CompOp
2 mathmath: from_middle_condition, middle_spec
map šŸ“–CompOp
6 mathmath: map_Y, map_f, Relation.map_g₁, CategoryTheory.GrothendieckTopology.diagram_map, Relation.map_gā‚‚, Relation.map_Z
middle šŸ“–CompOp
2 mathmath: from_middle_condition, middle_spec
precomp šŸ“–CompOp
5 mathmath: precompRelation_Z, precomp_f, precompRelation_gā‚‚, precomp_Y, precompRelation_g₁
precompRelation šŸ“–CompOp
3 mathmath: precompRelation_Z, precompRelation_gā‚‚, precompRelation_g₁
toMiddle šŸ“–CompOp—
toMiddleHom šŸ“–CompOp
2 mathmath: to_middle_condition, middle_spec

Theorems

NameKindAssumesProvesValidatesDepends On
base_Y šŸ“–mathematical—Y
base
CategoryTheory.GrothendieckTopology.Cover.pullback
——
base_f šŸ“–mathematical—f
base
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Y
CategoryTheory.GrothendieckTopology.Cover.pullback
——
ext šŸ“–ā€”Y
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
f
———
ext_iff šŸ“–mathematical—Y
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
f
—ext
from_middle_condition šŸ“–mathematical—CategoryTheory.Sieve.arrows
CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
middle
fromMiddleHom
—hf
hf šŸ“–mathematical—CategoryTheory.Sieve.arrows
CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
Y
f
——
map_Y šŸ“–mathematical—Y
map
——
map_f šŸ“–mathematical—f
map
——
middle_spec šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Y
CategoryTheory.GrothendieckTopology.Cover.bind
middle
toMiddleHom
fromMiddleHom
f
—hf
precompRelation_Z šŸ“–mathematical—Relation.Z
precomp
precompRelation
Y
——
precompRelation_g₁ šŸ“–mathematical—Relation.g₁
precomp
precompRelation
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Y
——
precompRelation_gā‚‚ šŸ“–mathematical—Relation.gā‚‚
precomp
precompRelation
——
precomp_Y šŸ“–mathematical—Y
precomp
——
precomp_f šŸ“–mathematical—f
precomp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Y
——
to_middle_condition šŸ“–mathematical—CategoryTheory.Sieve.arrows
Y
fromMiddle
CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.GrothendieckTopology.Cover.bind
toMiddleHom
—hf

CategoryTheory.GrothendieckTopology.Cover.Arrow.Relation

Definitions

NameCategoryTheorems
Z šŸ“–CompOp
12 mathmath: CategoryTheory.GrothendieckTopology.Cover.index_fst, CategoryTheory.GrothendieckTopology.Cover.Arrow.precompRelation_Z, CategoryTheory.GrothendieckTopology.Cover.preOneHypercover_Y, ext_iff, CategoryTheory.GrothendieckTopology.Cover.multicospanComp_inv_app, CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app, CategoryTheory.GrothendieckTopology.Cover.index_right, CategoryTheory.GrothendieckTopology.Cover.index_snd, map_Z, CategoryTheory.Meq.condition, w, w_assoc
base šŸ“–CompOp—
g₁ šŸ“–CompOp
8 mathmath: CategoryTheory.GrothendieckTopology.Cover.index_fst, CategoryTheory.GrothendieckTopology.Cover.preOneHypercover_p₁, ext_iff, map_g₁, CategoryTheory.GrothendieckTopology.Cover.Arrow.precompRelation_g₁, CategoryTheory.Meq.condition, w, w_assoc
gā‚‚ šŸ“–CompOp
8 mathmath: CategoryTheory.GrothendieckTopology.Cover.preOneHypercover_pā‚‚, ext_iff, map_gā‚‚, CategoryTheory.GrothendieckTopology.Cover.index_snd, CategoryTheory.GrothendieckTopology.Cover.Arrow.precompRelation_gā‚‚, CategoryTheory.Meq.condition, w, w_assoc
map šŸ“–CompOp
3 mathmath: map_g₁, map_gā‚‚, map_Z

Theorems

NameKindAssumesProvesValidatesDepends On
ext šŸ“–ā€”Z
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.GrothendieckTopology.Cover.Arrow.Y
g₁
gā‚‚
———
ext_iff šŸ“–mathematical—Z
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.GrothendieckTopology.Cover.Arrow.Y
g₁
gā‚‚
—ext
map_Z šŸ“–mathematical—Z
CategoryTheory.GrothendieckTopology.Cover.Arrow.map
map
——
map_g₁ šŸ“–mathematical—g₁
CategoryTheory.GrothendieckTopology.Cover.Arrow.map
map
——
map_gā‚‚ šŸ“–mathematical—gā‚‚
CategoryTheory.GrothendieckTopology.Cover.Arrow.map
map
——
w šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Z
CategoryTheory.GrothendieckTopology.Cover.Arrow.Y
g₁
CategoryTheory.GrothendieckTopology.Cover.Arrow.f
gā‚‚
——
w_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Z
CategoryTheory.GrothendieckTopology.Cover.Arrow.Y
g₁
CategoryTheory.GrothendieckTopology.Cover.Arrow.f
gā‚‚
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w

CategoryTheory.GrothendieckTopology.Cover.Relation

Definitions

NameCategoryTheorems
fst šŸ“–CompOp
9 mathmath: CategoryTheory.GrothendieckTopology.Cover.index_fst, CategoryTheory.GrothendieckTopology.Cover.shape_fst, CategoryTheory.GrothendieckTopology.Cover.multicospanComp_inv_app, CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app, ext_iff, CategoryTheory.GrothendieckTopology.Cover.index_right, CategoryTheory.GrothendieckTopology.Cover.index_snd, CategoryTheory.Meq.condition, mk'_fst
mk' šŸ“–CompOp
3 mathmath: mk'_snd, mk'_r, mk'_fst
r šŸ“–CompOp
8 mathmath: CategoryTheory.GrothendieckTopology.Cover.index_fst, CategoryTheory.GrothendieckTopology.Cover.multicospanComp_inv_app, mk'_r, CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app, ext_iff, CategoryTheory.GrothendieckTopology.Cover.index_right, CategoryTheory.GrothendieckTopology.Cover.index_snd, CategoryTheory.Meq.condition
snd šŸ“–CompOp
9 mathmath: CategoryTheory.GrothendieckTopology.Cover.index_fst, CategoryTheory.GrothendieckTopology.Cover.shape_snd, mk'_snd, CategoryTheory.GrothendieckTopology.Cover.multicospanComp_inv_app, CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app, ext_iff, CategoryTheory.GrothendieckTopology.Cover.index_right, CategoryTheory.GrothendieckTopology.Cover.index_snd, CategoryTheory.Meq.condition

Theorems

NameKindAssumesProvesValidatesDepends On
ext šŸ“–ā€”fst
snd
CategoryTheory.GrothendieckTopology.Cover.Arrow.Relation
r
———
ext_iff šŸ“–mathematical—fst
snd
CategoryTheory.GrothendieckTopology.Cover.Arrow.Relation
r
—ext
mk'_fst šŸ“–mathematical—fst
mk'
——
mk'_r šŸ“–mathematical—r
mk'
——
mk'_snd šŸ“–mathematical—snd
mk'
——

CategoryTheory.Pseudofunctor

Definitions

NameCategoryTheorems
Grothendieck šŸ“–CompData
15 mathmath: Grothendieck.map_id_eq, Grothendieck.map_id_map, Grothendieck.categoryStruct_id_fiber, Grothendieck.map_obj_fiber, Grothendieck.forget_map, Grothendieck.map_comp_forget, Grothendieck.categoryStruct_id_base, Grothendieck.Hom.congr, Grothendieck.map_comp_eq, Grothendieck.map_map_fiber, Grothendieck.categoryStruct_comp_base, Grothendieck.forget_obj, Grothendieck.map_obj_base, Grothendieck.categoryStruct_comp_fiber, Grothendieck.map_map_base

---

← Back to Index