Documentation Verification Report

Subcanonical

šŸ“ Source: Mathlib/CategoryTheory/Sites/Hypercover/Subcanonical.lean

Statistics

MetricCount
DefinitionsglueMorphisms, glueMorphisms
2
Theoremsf_glueMorphisms, f_glueMorphisms_assoc, f_glueMorphisms, f_glueMorphisms_assoc, hom_ext, instIsLocalAtTargetIsomorphisms, isPullback_of_forall_isPullback
7
Total9

CategoryTheory.GrothendieckTopology.OneHypercover

Definitions

NameCategoryTheorems
glueMorphisms šŸ“–CompOp
2 mathmath: f_glueMorphisms, f_glueMorphisms_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
f_glueMorphisms šŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreOneHypercover.Y
toPreOneHypercover
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreOneHypercover.toPreZeroHypercover
CategoryTheory.PreOneHypercover.p₁
CategoryTheory.PreOneHypercover.pā‚‚
CategoryTheory.PreZeroHypercover.f
glueMorphisms
—map_amalgamate
CategoryTheory.GrothendieckTopology.Subcanonical.isSheaf_of_isRepresentable
CategoryTheory.Functor.instIsRepresentableObjOppositeTypeYoneda
f_glueMorphisms_assoc šŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreOneHypercover.Y
toPreOneHypercover
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreOneHypercover.toPreZeroHypercover
CategoryTheory.PreOneHypercover.p₁
CategoryTheory.PreOneHypercover.pā‚‚
CategoryTheory.PreZeroHypercover.f
glueMorphisms
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
f_glueMorphisms

CategoryTheory.Precoverage.ZeroHypercover

Definitions

NameCategoryTheorems
glueMorphisms šŸ“–CompOp
2 mathmath: f_glueMorphisms, f_glueMorphisms_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
f_glueMorphisms šŸ“–mathematicalCategoryTheory.PreZeroHypercover.HasPullbacks
toPreZeroHypercover
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreZeroHypercover.f
CategoryTheory.Limits.pullback.fst
CategoryTheory.Limits.pullback.snd
glueMorphisms—CategoryTheory.GrothendieckTopology.OneHypercover.f_glueMorphisms
f_glueMorphisms_assoc šŸ“–mathematicalCategoryTheory.PreZeroHypercover.HasPullbacks
toPreZeroHypercover
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreZeroHypercover.f
CategoryTheory.Limits.pullback.fst
CategoryTheory.Limits.pullback.snd
glueMorphisms—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
f_glueMorphisms
hom_ext šŸ“–ā€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreZeroHypercover.X
toPreZeroHypercover
CategoryTheory.PreZeroHypercover.f
——CategoryTheory.Presieve.IsSheaf.isSheafFor_of_mem_precoverage
CategoryTheory.GrothendieckTopology.Subcanonical.isSheaf_of_isRepresentable
CategoryTheory.Functor.instIsRepresentableObjOppositeTypeYoneda
memā‚€
CategoryTheory.PreZeroHypercover.ext_of_isSeparatedFor
CategoryTheory.Presieve.IsSheafFor.isSeparatedFor
instIsLocalAtTargetIsomorphisms šŸ“–mathematical—CategoryTheory.MorphismProperty.IsLocalAtTarget
CategoryTheory.MorphismProperty.isomorphisms
CategoryTheory.Precoverage.instHasPullbacksOfHasPullbacks
—CategoryTheory.MorphismProperty.IsLocalAtTarget.mk_of_isStableUnderBaseChange
CategoryTheory.Precoverage.instHasPullbacksOfHasPullbacks
CategoryTheory.MorphismProperty.IsStableUnderBaseChange.isomorphisms
instHasPullbackFOfHasPullbacksPresieveā‚€_1
instHasPullbacksPresieveā‚€OfHasPullbacks
instHasPullbackFOfHasPullbacksPresieveā‚€
CategoryTheory.Limits.hasPullbackHorizPaste
CategoryTheory.IsPullback.instHasPullbackFst
CategoryTheory.Limits.pullback.condition
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.cancel_epi
CategoryTheory.epi_comp
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Limits.pullback.map_isIso
CategoryTheory.IsIso.id
CategoryTheory.Category.assoc
CategoryTheory.Limits.limit.lift_Ļ€_assoc
CategoryTheory.IsIso.hom_inv_id_assoc
CategoryTheory.Limits.pullbackRightPullbackFstIso_hom_fst_assoc
CategoryTheory.Limits.pullbackRightPullbackFstIso_hom_snd_assoc
hom_ext
CategoryTheory.Limits.pullback.condition_assoc
f_glueMorphisms
f_glueMorphisms_assoc
CategoryTheory.IsIso.inv_hom_id_assoc
isPullback_of_forall_isPullback šŸ“–ā€”CategoryTheory.IsPullback
CategoryTheory.Limits.pullback
CategoryTheory.PreZeroHypercover.X
toPreZeroHypercover
CategoryTheory.PreZeroHypercover.f
instHasPullbackFOfHasPullbacksPresieveā‚€_1
instHasPullbacksPresieveā‚€OfHasPullbacks
CategoryTheory.Precoverage.instHasPullbacksOfHasPullbacks
CategoryTheory.Limits.pullback.snd
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback.fst
——instHasPullbackFOfHasPullbacksPresieveā‚€_1
instHasPullbacksPresieveā‚€OfHasPullbacks
CategoryTheory.Precoverage.instHasPullbacksOfHasPullbacks
hom_ext
CategoryTheory.Limits.pullback.condition_assoc
CategoryTheory.Category.assoc
CategoryTheory.CommSq.w
CategoryTheory.IsPullback.toCommSq
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
instHasPullbackFOfHasPullbacksPresieveā‚€
CategoryTheory.MorphismProperty.IsLocalAtTarget.iff_of_zeroHypercover
instIsLocalAtTargetIsomorphisms
CategoryTheory.Limits.hasPullbackHorizPaste
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.IsPullback.paste_vert_iff
CategoryTheory.IsPullback.of_hasPullback
CategoryTheory.Limits.limit.lift_Ļ€
CategoryTheory.IsPullback.flip
CategoryTheory.Limits.pullback.hom_ext
CategoryTheory.Limits.pullback.condition
CategoryTheory.Limits.limit.lift_Ļ€_assoc
CategoryTheory.Presieve.instHasPullbackOfHasPairwisePullbacksOfArrows
CategoryTheory.Presieve.instHasPairwisePullbacksOfHasPullbacks
CategoryTheory.Iso.eq_inv_comp
CategoryTheory.IsPullback.isoPullback_hom_snd
CategoryTheory.IsIso.comp_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Iso.isIso_hom
CategoryTheory.IsPullback.of_iso_pullback

---

← Back to Index