Covers in subcanonical topologies #
In this file we provide API related to covers in subcanonical topologies.
noncomputable def
CategoryTheory.GrothendieckTopology.OneHypercover.glueMorphisms
{C : Type u}
[Category.{v, u} C]
{J : GrothendieckTopology C}
[J.Subcanonical]
{S T : C}
(E : J.OneHypercover S)
(f : (i : E.Iโ) โ E.X i โถ T)
(h : โ โฆi j : E.Iโโฆ (k : E.Iโ i j), CategoryStruct.comp (E.pโ k) (f i) = CategoryStruct.comp (E.pโ k) (f j))
:
Glue a family of morphisms along a 1-hypercover for a subcanonical topology.
Equations
Instances For
@[simp]
theorem
CategoryTheory.GrothendieckTopology.OneHypercover.f_glueMorphisms
{C : Type u}
[Category.{v, u} C]
{J : GrothendieckTopology C}
[J.Subcanonical]
{S T : C}
(E : J.OneHypercover S)
(f : (i : E.Iโ) โ E.X i โถ T)
(h : โ โฆi j : E.Iโโฆ (k : E.Iโ i j), CategoryStruct.comp (E.pโ k) (f i) = CategoryStruct.comp (E.pโ k) (f j))
(i : E.Iโ)
:
@[simp]
theorem
CategoryTheory.GrothendieckTopology.OneHypercover.f_glueMorphisms_assoc
{C : Type u}
[Category.{v, u} C]
{J : GrothendieckTopology C}
[J.Subcanonical]
{S T : C}
(E : J.OneHypercover S)
(f : (i : E.Iโ) โ E.X i โถ T)
(h : โ โฆi j : E.Iโโฆ (k : E.Iโ i j), CategoryStruct.comp (E.pโ k) (f i) = CategoryStruct.comp (E.pโ k) (f j))
(i : E.Iโ)
{Z : C}
(hโ : T โถ Z)
:
CategoryStruct.comp (E.f i) (CategoryStruct.comp (E.glueMorphisms f h) hโ) = CategoryStruct.comp (f i) hโ
theorem
CategoryTheory.Precoverage.ZeroHypercover.hom_ext
{C : Type u}
[Category.{v, u} C]
{J : Precoverage C}
[J.toGrothendieck.Subcanonical]
{X Y : C}
(๐ฐ : J.ZeroHypercover X)
{f g : X โถ Y}
(h : โ (i : ๐ฐ.Iโ), CategoryStruct.comp (๐ฐ.f i) f = CategoryStruct.comp (๐ฐ.f i) g)
:
noncomputable def
CategoryTheory.Precoverage.ZeroHypercover.glueMorphisms
{C : Type u}
[Category.{v, u} C]
{J : Precoverage C}
[J.toGrothendieck.Subcanonical]
{S T : C}
(๐ฐ : J.ZeroHypercover S)
[๐ฐ.HasPullbacks]
(f : (i : ๐ฐ.Iโ) โ ๐ฐ.X i โถ T)
(hf :
โ (i j : ๐ฐ.Iโ),
CategoryStruct.comp (Limits.pullback.fst (๐ฐ.f i) (๐ฐ.f j)) (f i) = CategoryStruct.comp (Limits.pullback.snd (๐ฐ.f i) (๐ฐ.f j)) (f j))
:
Glue morphisms along a 0-hypercover.
Equations
Instances For
@[simp]
theorem
CategoryTheory.Precoverage.ZeroHypercover.f_glueMorphisms
{C : Type u}
[Category.{v, u} C]
{J : Precoverage C}
[J.toGrothendieck.Subcanonical]
{S T : C}
(๐ฐ : J.ZeroHypercover S)
[๐ฐ.HasPullbacks]
(f : (i : ๐ฐ.Iโ) โ ๐ฐ.X i โถ T)
(hf :
โ (i j : ๐ฐ.Iโ),
CategoryStruct.comp (Limits.pullback.fst (๐ฐ.f i) (๐ฐ.f j)) (f i) = CategoryStruct.comp (Limits.pullback.snd (๐ฐ.f i) (๐ฐ.f j)) (f j))
(i : ๐ฐ.Iโ)
:
@[simp]
theorem
CategoryTheory.Precoverage.ZeroHypercover.f_glueMorphisms_assoc
{C : Type u}
[Category.{v, u} C]
{J : Precoverage C}
[J.toGrothendieck.Subcanonical]
{S T : C}
(๐ฐ : J.ZeroHypercover S)
[๐ฐ.HasPullbacks]
(f : (i : ๐ฐ.Iโ) โ ๐ฐ.X i โถ T)
(hf :
โ (i j : ๐ฐ.Iโ),
CategoryStruct.comp (Limits.pullback.fst (๐ฐ.f i) (๐ฐ.f j)) (f i) = CategoryStruct.comp (Limits.pullback.snd (๐ฐ.f i) (๐ฐ.f j)) (f j))
(i : ๐ฐ.Iโ)
{Z : C}
(h : T โถ Z)
:
CategoryStruct.comp (๐ฐ.f i) (CategoryStruct.comp (๐ฐ.glueMorphisms f hf) h) = CategoryStruct.comp (f i) h
instance
CategoryTheory.Precoverage.ZeroHypercover.instIsLocalAtTargetIsomorphisms
{C : Type u}
[Category.{v, u} C]
{J : Precoverage C}
[J.toGrothendieck.Subcanonical]
[Limits.HasPullbacks C]
[J.IsStableUnderBaseChange]
:
If J is a subcanonical precoverage, isomorphisms are local on the target for J.
theorem
CategoryTheory.Precoverage.ZeroHypercover.isPullback_of_forall_isPullback
{C : Type u}
[Category.{v, u} C]
{J : Precoverage C}
[J.toGrothendieck.Subcanonical]
[Limits.HasPullbacks C]
[J.IsStableUnderBaseChange]
{P X Y Z : C}
(fst : P โถ X)
(snd : P โถ Y)
(f : X โถ Z)
(g : Y โถ Z)
(๐ฐ : J.ZeroHypercover X)
(H :
โ (i : ๐ฐ.Iโ),
IsPullback (Limits.pullback.snd fst (๐ฐ.f i)) (CategoryStruct.comp (Limits.pullback.fst fst (๐ฐ.f i)) snd)
(CategoryStruct.comp (๐ฐ.f i) f) g)
:
IsPullback fst snd f g
To show that
P ---> X
| |
v v
Y ---> Z
is a pullback square, it suffices to check that
P ร[X] Uแตข ---> Uแตข
| |
v v
Y --------> Z
is a pullback square for all Uแตข in a cover of X for some subcanonical topology.