Documentation

Mathlib.CategoryTheory.Sites.Hypercover.Subcanonical

Covers in subcanonical topologies #

In this file we provide API related to covers in subcanonical topologies.

noncomputable def CategoryTheory.GrothendieckTopology.OneHypercover.glueMorphisms {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} [J.Subcanonical] {S T : C} (E : J.OneHypercover S) (f : (i : E.Iโ‚€) โ†’ E.X i โŸถ T) (h : โˆ€ โฆƒi j : E.Iโ‚€โฆ„ (k : E.Iโ‚ i j), CategoryStruct.comp (E.pโ‚ k) (f i) = CategoryStruct.comp (E.pโ‚‚ k) (f j)) :

Glue a family of morphisms along a 1-hypercover for a subcanonical topology.

Equations
    Instances For
      @[simp]
      theorem CategoryTheory.GrothendieckTopology.OneHypercover.f_glueMorphisms {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} [J.Subcanonical] {S T : C} (E : J.OneHypercover S) (f : (i : E.Iโ‚€) โ†’ E.X i โŸถ T) (h : โˆ€ โฆƒi j : E.Iโ‚€โฆ„ (k : E.Iโ‚ i j), CategoryStruct.comp (E.pโ‚ k) (f i) = CategoryStruct.comp (E.pโ‚‚ k) (f j)) (i : E.Iโ‚€) :
      @[simp]
      theorem CategoryTheory.GrothendieckTopology.OneHypercover.f_glueMorphisms_assoc {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} [J.Subcanonical] {S T : C} (E : J.OneHypercover S) (f : (i : E.Iโ‚€) โ†’ E.X i โŸถ T) (h : โˆ€ โฆƒi j : E.Iโ‚€โฆ„ (k : E.Iโ‚ i j), CategoryStruct.comp (E.pโ‚ k) (f i) = CategoryStruct.comp (E.pโ‚‚ k) (f j)) (i : E.Iโ‚€) {Z : C} (hโœ : T โŸถ Z) :
      theorem CategoryTheory.Precoverage.ZeroHypercover.hom_ext {C : Type u} [Category.{v, u} C] {J : Precoverage C} [J.toGrothendieck.Subcanonical] {X Y : C} (๐’ฐ : J.ZeroHypercover X) {f g : X โŸถ Y} (h : โˆ€ (i : ๐’ฐ.Iโ‚€), CategoryStruct.comp (๐’ฐ.f i) f = CategoryStruct.comp (๐’ฐ.f i) g) :
      f = g
      noncomputable def CategoryTheory.Precoverage.ZeroHypercover.glueMorphisms {C : Type u} [Category.{v, u} C] {J : Precoverage C} [J.toGrothendieck.Subcanonical] {S T : C} (๐’ฐ : J.ZeroHypercover S) [๐’ฐ.HasPullbacks] (f : (i : ๐’ฐ.Iโ‚€) โ†’ ๐’ฐ.X i โŸถ T) (hf : โˆ€ (i j : ๐’ฐ.Iโ‚€), CategoryStruct.comp (Limits.pullback.fst (๐’ฐ.f i) (๐’ฐ.f j)) (f i) = CategoryStruct.comp (Limits.pullback.snd (๐’ฐ.f i) (๐’ฐ.f j)) (f j)) :

      Glue morphisms along a 0-hypercover.

      Equations
        Instances For
          @[simp]
          theorem CategoryTheory.Precoverage.ZeroHypercover.f_glueMorphisms {C : Type u} [Category.{v, u} C] {J : Precoverage C} [J.toGrothendieck.Subcanonical] {S T : C} (๐’ฐ : J.ZeroHypercover S) [๐’ฐ.HasPullbacks] (f : (i : ๐’ฐ.Iโ‚€) โ†’ ๐’ฐ.X i โŸถ T) (hf : โˆ€ (i j : ๐’ฐ.Iโ‚€), CategoryStruct.comp (Limits.pullback.fst (๐’ฐ.f i) (๐’ฐ.f j)) (f i) = CategoryStruct.comp (Limits.pullback.snd (๐’ฐ.f i) (๐’ฐ.f j)) (f j)) (i : ๐’ฐ.Iโ‚€) :
          CategoryStruct.comp (๐’ฐ.f i) (๐’ฐ.glueMorphisms f hf) = f i
          @[simp]
          theorem CategoryTheory.Precoverage.ZeroHypercover.f_glueMorphisms_assoc {C : Type u} [Category.{v, u} C] {J : Precoverage C} [J.toGrothendieck.Subcanonical] {S T : C} (๐’ฐ : J.ZeroHypercover S) [๐’ฐ.HasPullbacks] (f : (i : ๐’ฐ.Iโ‚€) โ†’ ๐’ฐ.X i โŸถ T) (hf : โˆ€ (i j : ๐’ฐ.Iโ‚€), CategoryStruct.comp (Limits.pullback.fst (๐’ฐ.f i) (๐’ฐ.f j)) (f i) = CategoryStruct.comp (Limits.pullback.snd (๐’ฐ.f i) (๐’ฐ.f j)) (f j)) (i : ๐’ฐ.Iโ‚€) {Z : C} (h : T โŸถ Z) :
          CategoryStruct.comp (๐’ฐ.f i) (CategoryStruct.comp (๐’ฐ.glueMorphisms f hf) h) = CategoryStruct.comp (f i) h
          theorem CategoryTheory.Precoverage.ZeroHypercover.isPullback_of_forall_isPullback {C : Type u} [Category.{v, u} C] {J : Precoverage C} [J.toGrothendieck.Subcanonical] [Limits.HasPullbacks C] [J.IsStableUnderBaseChange] {P X Y Z : C} (fst : P โŸถ X) (snd : P โŸถ Y) (f : X โŸถ Z) (g : Y โŸถ Z) (๐’ฐ : J.ZeroHypercover X) (H : โˆ€ (i : ๐’ฐ.Iโ‚€), IsPullback (Limits.pullback.snd fst (๐’ฐ.f i)) (CategoryStruct.comp (Limits.pullback.fst fst (๐’ฐ.f i)) snd) (CategoryStruct.comp (๐’ฐ.f i) f) g) :
          IsPullback fst snd f g

          To show that

          P ---> X
          |      |
          v      v
          Y ---> Z
          

          is a pullback square, it suffices to check that

          P ร—[X] Uแตข ---> Uแตข
             |           |
             v           v
             Y --------> Z
          

          is a pullback square for all Uแตข in a cover of X for some subcanonical topology.