Documentation Verification Report

LocallyBijective

📁 Source: Mathlib/CategoryTheory/Sites/LocallyBijective.lean

Statistics

MetricCount
DefinitionsWEqualsLocallyBijective
1
TheoremsisLocallyInjective, isLocallySurjective, iff, mk', W_iff_isLocallyBijective, W_of_isLocallyBijective, instIsLocallyInjectiveToSheafify, instIsLocallySurjectiveToSheafify, instWEqualsLocallyBijectiveOfHasWeakSheafifyOfHasSheafComposeOfPreservesSheafificationOfReflectsIsomorphismsForget, instWEqualsLocallyBijectiveTypeHom, isLocallyInjective_presheafToSheaf_map_iff, isLocallySurjective_presheafToSheaf_map_iff, isLocallyBijective_iff_isIso
13
Total14

CategoryTheory.GrothendieckTopology

Definitions

NameCategoryTheorems
WEqualsLocallyBijective 📖CompData
6 mathmath: instWEqualsLocallyBijectiveOfHasWeakSheafifyOfHasSheafComposeOfPreservesSheafificationOfReflectsIsomorphismsForget, WEqualsLocallyBijective.ofEssentiallySmall, WEqualsLocallyBijective.mk', LightProfinite.instWEqualsLocallyBijectiveCoherentTopology, WEqualsLocallyBijective.transport, instWEqualsLocallyBijectiveTypeHom

Theorems

NameKindAssumesProvesValidatesDepends On
W_iff_isLocallyBijective 📖mathematicalW
CategoryTheory.Presheaf.IsLocallyInjective
CategoryTheory.Presheaf.IsLocallySurjective
WEqualsLocallyBijective.iff
W_of_isLocallyBijective 📖mathematicalWW_iff_isLocallyBijective
instIsLocallyInjectiveToSheafify 📖mathematicalCategoryTheory.Presheaf.IsLocallyInjective
CategoryTheory.sheafify
CategoryTheory.toSheafify
W.isLocallyInjective
W_toSheafify
instIsLocallySurjectiveToSheafify 📖mathematicalCategoryTheory.Presheaf.IsLocallySurjective
CategoryTheory.sheafify
CategoryTheory.toSheafify
W.isLocallySurjective
W_toSheafify
instWEqualsLocallyBijectiveOfHasWeakSheafifyOfHasSheafComposeOfPreservesSheafificationOfReflectsIsomorphismsForget 📖mathematicalWEqualsLocallyBijectiveWEqualsLocallyBijective.mk'
CategoryTheory.Presheaf.isLocallyInjective_toSheafify'
CategoryTheory.Presheaf.isLocallySurjective_toSheafify'
instWEqualsLocallyBijectiveTypeHom 📖mathematicalWEqualsLocallyBijective
CategoryTheory.types
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
instWEqualsLocallyBijectiveOfHasWeakSheafifyOfHasSheafComposeOfPreservesSheafificationOfReflectsIsomorphismsForget
CategoryTheory.instHasWeakSheafifyOfHasSheafify
CategoryTheory.instHasSheafifyType
CategoryTheory.hasSheafCompose_of_preservesMulticospan
CategoryTheory.Functor.corepresentable_preservesLimit
CategoryTheory.Types.instIsCorepresentableForgetTypeHom
instPreservesSheafificationForgetOfPreservesLimitsOfHasColimitsOfShapeOfPreservesColimitsOfShapeOppositeCoverOfHasLimitsOfShapeWalkingMulticospanOfReflectsIsomorphisms
CategoryTheory.Types.instPreservesLimitsOfSizeForgetTypeHom
CategoryTheory.Limits.Types.hasColimitsOfShape
Opposite.small
UnivLE.small
UnivLE.self
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Types.instIsEquivalenceForgetTypeHom
CategoryTheory.Limits.Types.hasLimitsOfShape
CategoryTheory.reflectsIsomorphisms_of_full_and_faithful
CategoryTheory.Types.instFullForgetTypeHom
CategoryTheory.instFaithfulForget

CategoryTheory.GrothendieckTopology.W

Theorems

NameKindAssumesProvesValidatesDepends On
isLocallyInjective 📖mathematicalCategoryTheory.GrothendieckTopology.WCategoryTheory.Presheaf.IsLocallyInjectiveCategoryTheory.GrothendieckTopology.W_iff_isLocallyBijective
isLocallySurjective 📖mathematicalCategoryTheory.GrothendieckTopology.WCategoryTheory.Presheaf.IsLocallySurjectiveCategoryTheory.GrothendieckTopology.W_iff_isLocallyBijective

CategoryTheory.GrothendieckTopology.WEqualsLocallyBijective

Theorems

NameKindAssumesProvesValidatesDepends On
iff 📖mathematicalCategoryTheory.GrothendieckTopology.W
CategoryTheory.Presheaf.IsLocallyInjective
CategoryTheory.Presheaf.IsLocallySurjective
mk' 📖mathematicalCategoryTheory.Presheaf.IsLocallyInjective
CategoryTheory.sheafify
CategoryTheory.toSheafify
CategoryTheory.Presheaf.IsLocallySurjective
CategoryTheory.GrothendieckTopology.WEqualsLocallyBijectiveCategoryTheory.GrothendieckTopology.W_iff
CategoryTheory.Sheaf.isLocallyBijective_iff_isIso
CategoryTheory.Presheaf.isLocallyInjective_comp_iff
CategoryTheory.Presheaf.isLocallySurjective_comp_iff
CategoryTheory.toSheafify_naturality
CategoryTheory.Presheaf.comp_isLocallyInjective_iff
CategoryTheory.Presheaf.comp_isLocallySurjective_iff

CategoryTheory.Presheaf

Theorems

NameKindAssumesProvesValidatesDepends On
isLocallyInjective_presheafToSheaf_map_iff 📖mathematicalCategoryTheory.Sheaf.IsLocallyInjective
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.presheafToSheaf
CategoryTheory.Functor.map
IsLocallyInjective
CategoryTheory.Sheaf.isLocallyInjective_sheafToPresheaf_map_iff
isLocallyInjective_comp_iff
CategoryTheory.GrothendieckTopology.instIsLocallyInjectiveToSheafify
comp_isLocallyInjective_iff
CategoryTheory.GrothendieckTopology.instIsLocallySurjectiveToSheafify
CategoryTheory.toSheafify_naturality
CategoryTheory.sheafToPresheaf_map
isLocallySurjective_presheafToSheaf_map_iff 📖mathematicalCategoryTheory.Sheaf.IsLocallySurjective
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.presheafToSheaf
CategoryTheory.Functor.map
IsLocallySurjective
CategoryTheory.Sheaf.isLocallySurjective_sheafToPresheaf_map_iff
isLocallySurjective_comp_iff
CategoryTheory.GrothendieckTopology.instIsLocallyInjectiveToSheafify
CategoryTheory.GrothendieckTopology.instIsLocallySurjectiveToSheafify
comp_isLocallySurjective_iff
CategoryTheory.toSheafify_naturality
CategoryTheory.sheafToPresheaf_map

CategoryTheory.Sheaf

Theorems

NameKindAssumesProvesValidatesDepends On
isLocallyBijective_iff_isIso 📖mathematicalIsLocallyInjective
IsLocallySurjective
CategoryTheory.IsIso
CategoryTheory.Sheaf
instCategorySheaf
CategoryTheory.isIso_iff_of_reflects_iso
CategoryTheory.instReflectsIsomorphismsSheafSheafCompose
isLocallyInjective_forget
instIsLocallySurjectiveHomMapTypeSheafComposeForget
isLocallyInjective_of_iso
isLocallySurjective_of_iso

---

← Back to Index