Documentation

Mathlib.CategoryTheory.Sites.LocallyBijective

Locally bijective morphisms of presheaves #

Let C be a category equipped with a Grothendieck topology J. Let A be a concrete category. In this file, we introduce a type class J.WEqualsLocallyBijective A which says that the class J.W (of morphisms of presheaves which become isomorphisms after sheafification) is the class of morphisms that are both locally injective and locally surjective (i.e. locally bijective). We prove that this holds iff for any presheaf P : Cแต’แต– โฅค A, the sheafification map toSheafify J P is locally bijective. We show that this holds under certain universe assumptions.

theorem CategoryTheory.Sheaf.isLocallyBijective_iff_isIso {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {A : Type u'} [Category.{v', u'} A] {FA : A โ†’ A โ†’ Type u_1} {CA : A โ†’ Type w'} [(X Y : A) โ†’ FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] {F G : Sheaf J A} (f : F โŸถ G) [(forget A).ReflectsIsomorphisms] [J.HasSheafCompose (forget A)] :
class CategoryTheory.GrothendieckTopology.WEqualsLocallyBijective {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) (A : Type u') [Category.{v', u'} A] {FA : A โ†’ A โ†’ Type u_1} {CA : A โ†’ Type w'} [(X Y : A) โ†’ FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] :

Given a category C equipped with a Grothendieck topology J and a concrete category A, this property holds if a morphism in Cแต’แต– โฅค A satisfies J.W (i.e. becomes an iso after sheafification) iff it is both locally injective and locally surjective.

Instances
    theorem CategoryTheory.GrothendieckTopology.W_iff_isLocallyBijective {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {A : Type u'} [Category.{v', u'} A] {FA : A โ†’ A โ†’ Type u_1} {CA : A โ†’ Type w'} [(X Y : A) โ†’ FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] [J.WEqualsLocallyBijective A] {X Y : Functor Cแต’แต– A} (f : X โŸถ Y) :
    theorem CategoryTheory.GrothendieckTopology.W_of_isLocallyBijective {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {A : Type u'} [Category.{v', u'} A] {FA : A โ†’ A โ†’ Type u_1} {CA : A โ†’ Type w'} [(X Y : A) โ†’ FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] [J.WEqualsLocallyBijective A] {X Y : Functor Cแต’แต– A} (f : X โŸถ Y) [Presheaf.IsLocallyInjective J f] [Presheaf.IsLocallySurjective J f] :
    J.W f
    theorem CategoryTheory.GrothendieckTopology.W.isLocallyInjective {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {A : Type u'} [Category.{v', u'} A] {FA : A โ†’ A โ†’ Type u_1} {CA : A โ†’ Type w'} [(X Y : A) โ†’ FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] [J.WEqualsLocallyBijective A] {X Y : Functor Cแต’แต– A} {f : X โŸถ Y} (hf : J.W f) :
    theorem CategoryTheory.GrothendieckTopology.W.isLocallySurjective {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {A : Type u'} [Category.{v', u'} A] {FA : A โ†’ A โ†’ Type u_1} {CA : A โ†’ Type w'} [(X Y : A) โ†’ FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] [J.WEqualsLocallyBijective A] {X Y : Functor Cแต’แต– A} {f : X โŸถ Y} (hf : J.W f) :
    theorem CategoryTheory.Presheaf.isLocallyInjective_presheafToSheaf_map_iff {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {A : Type u'} [Category.{v', u'} A] {FA : A โ†’ A โ†’ Type u_1} {CA : A โ†’ Type w'} [(X Y : A) โ†’ FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] [HasWeakSheafify J A] [J.WEqualsLocallyBijective A] {P Q : Functor Cแต’แต– A} (ฯ† : P โŸถ Q) :
    theorem CategoryTheory.Presheaf.isLocallySurjective_presheafToSheaf_map_iff {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {A : Type u'} [Category.{v', u'} A] {FA : A โ†’ A โ†’ Type u_1} {CA : A โ†’ Type w'} [(X Y : A) โ†’ FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] [HasWeakSheafify J A] [J.WEqualsLocallyBijective A] {P Q : Functor Cแต’แต– A} (ฯ† : P โŸถ Q) :