Documentation Verification Report

Basic

πŸ“ Source: Mathlib/CategoryTheory/Sites/Point/Basic.lean

Statistics

MetricCount
Definitionscomap, fiber, presheafFiber, presheafFiberCompIso, presheafFiberDesc, presheafToSheafCompSheafFiber, sheafFiber, sheafFiberCompIso, toPresheafFiber, toPresheafFiberNatTrans
10
TheoremsW_isInvertedBy_presheafFiber, comap_fiber, initiallySmall, instHasColimitsOfShapeOppositeElementsFiber, instHasExactColimitsOfShapeOppositeElementsFiberOfLocallySmallOfAB5OfSizeOfHasFiniteLimits, instIsIsoMapFunctorOppositePresheafFiberToSheafify, instPreservesColimitsOfShapeOppositeElementsFiberForget, instPreservesColimitsOfSizeFunctorOppositePresheafFiber, instPreservesColimitsOfSizeSheafSheafFiberOfHasSheafifyOfWEqualsLocallyBijectiveOfReflectsIsomorphismsOfPreservesFilteredColimitsOfSizeForgetOfLocallySmall, instPreservesFiniteLimitsFunctorOppositePresheafFiberOfLocallySmallOfHasFiniteLimitsOfAB5OfSize, instPreservesFiniteLimitsSheafSheafFiberOfLocallySmallOfHasFiniteLimitsOfAB5OfSize, isCofiltered, jointly_surjective, presheafFiber_hom_ext, presheafFiber_hom_ext_iff, sheafFiberCompIso_hom_app, sheafFiberCompIso_inv_app, toPresheafFiberNatTrans_app, toPresheafFiber_eq_iff', toPresheafFiber_jointly_surjective, toPresheafFiber_jointly_surjectiveβ‚‚, toPresheafFiber_map_bijective, toPresheafFiber_map_injective, toPresheafFiber_map_surjective, toPresheafFiber_naturality, toPresheafFiber_naturality_apply, toPresheafFiber_naturality_assoc, toPresheafFiber_presheafFiberCompIso_hom_app, toPresheafFiber_presheafFiberCompIso_hom_app_assoc, toPresheafFiber_presheafFiberDesc, toPresheafFiber_presheafFiberDesc_assoc, toPresheafFiber_w, toPresheafFiber_w_apply, toPresheafFiber_w_assoc
34
Total44

CategoryTheory.GrothendieckTopology.Point

Definitions

NameCategoryTheorems
comap πŸ“–CompOp
1 mathmath: comap_fiber
fiber πŸ“–CompOp
15 mathmath: Hom.presheafFiber_app, toPresheafFiber_eq_iff', comap_fiber, id_hom, toPresheafFiber_w, toPresheafFiber_w_apply, jointly_surjective, comp_hom, instHasExactColimitsOfShapeOppositeElementsFiberOfLocallySmallOfAB5OfSizeOfHasFiniteLimits, instHasColimitsOfShapeOppositeElementsFiber, toPresheafFiber_w_assoc, comp_hom_assoc, instPreservesColimitsOfShapeOppositeElementsFiberForget, isCofiltered, initiallySmall
presheafFiber πŸ“–CompOp
28 mathmath: Hom.presheafFiber_app, toPresheafFiber_presheafFiberDesc, toPresheafFiber_eq_iff', Hom.presheafFiber_comp, toPresheafFiber_naturality_assoc, toPresheafFiber_jointly_surjective, instPreservesColimitsOfSizeFunctorOppositePresheafFiber, toPresheafFiber_naturality_apply, toPresheafFiber_w, Hom.presheafFiber_comp_assoc, W_isInvertedBy_presheafFiber, toPresheafFiber_map_bijective, toPresheafFiber_w_apply, instIsIsoMapFunctorOppositePresheafFiberToSheafify, Hom.presheafFiber_id, toPresheafFiber_w_assoc, instPreservesFiniteLimitsFunctorOppositePresheafFiberOfLocallySmallOfHasFiniteLimitsOfAB5OfSize, toPresheafFiber_presheafFiberDesc_assoc, toPresheafFiber_map_injective, toPresheafFiber_jointly_surjectiveβ‚‚, toPresheafFiber_map_surjective, toPresheafFiber_naturality, toPresheafFiberNatTrans_app, presheafFiber_hom_ext_iff, sheafFiberCompIso_hom_app, toPresheafFiber_presheafFiberCompIso_hom_app_assoc, sheafFiberCompIso_inv_app, toPresheafFiber_presheafFiberCompIso_hom_app
presheafFiberCompIso πŸ“–CompOp
4 mathmath: sheafFiberCompIso_hom_app, toPresheafFiber_presheafFiberCompIso_hom_app_assoc, sheafFiberCompIso_inv_app, toPresheafFiber_presheafFiberCompIso_hom_app
presheafFiberDesc πŸ“–CompOp
3 mathmath: Hom.presheafFiber_app, toPresheafFiber_presheafFiberDesc, toPresheafFiber_presheafFiberDesc_assoc
presheafToSheafCompSheafFiber πŸ“–CompOpβ€”
sheafFiber πŸ“–CompOp
7 mathmath: instPreservesFiniteLimitsSheafSheafFiberOfLocallySmallOfHasFiniteLimitsOfAB5OfSize, Hom.sheafFiber_comp_assoc, Hom.sheafFiber_comp, instPreservesColimitsOfSizeSheafSheafFiberOfHasSheafifyOfWEqualsLocallyBijectiveOfReflectsIsomorphismsOfPreservesFilteredColimitsOfSizeForgetOfLocallySmall, Hom.sheafFiber_id, sheafFiberCompIso_hom_app, sheafFiberCompIso_inv_app
sheafFiberCompIso πŸ“–CompOp
2 mathmath: sheafFiberCompIso_hom_app, sheafFiberCompIso_inv_app
toPresheafFiber πŸ“–CompOp
16 mathmath: Hom.presheafFiber_app, toPresheafFiber_presheafFiberDesc, toPresheafFiber_eq_iff', toPresheafFiber_naturality_assoc, toPresheafFiber_jointly_surjective, toPresheafFiber_naturality_apply, toPresheafFiber_w, toPresheafFiber_w_apply, toPresheafFiber_w_assoc, toPresheafFiber_presheafFiberDesc_assoc, toPresheafFiber_jointly_surjectiveβ‚‚, toPresheafFiber_naturality, toPresheafFiberNatTrans_app, presheafFiber_hom_ext_iff, toPresheafFiber_presheafFiberCompIso_hom_app_assoc, toPresheafFiber_presheafFiberCompIso_hom_app
toPresheafFiberNatTrans πŸ“–CompOp
1 mathmath: toPresheafFiberNatTrans_app

Theorems

NameKindAssumesProvesValidatesDepends On
W_isInvertedBy_presheafFiber πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.IsInvertedBy
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.GrothendieckTopology.W
presheafFiber
β€”CategoryTheory.GrothendieckTopology.W_iff_isLocallyBijective
CategoryTheory.isIso_iff_of_reflects_iso
CategoryTheory.isIso_iff_bijective
toPresheafFiber_map_bijective
comap_fiber πŸ“–mathematicalCategoryTheory.CoverPreservingfiber
comap
CategoryTheory.Functor.comp
CategoryTheory.types
β€”β€”
initiallySmall πŸ“–mathematicalβ€”CategoryTheory.InitiallySmall
CategoryTheory.Functor.Elements
fiber
CategoryTheory.categoryOfElements
β€”β€”
instHasColimitsOfShapeOppositeElementsFiber πŸ“–mathematicalβ€”CategoryTheory.Limits.HasColimitsOfShape
Opposite
CategoryTheory.Functor.Elements
fiber
CategoryTheory.Category.opposite
CategoryTheory.categoryOfElements
β€”CategoryTheory.Limits.hasColimitsOfShape_of_finallySmall
CategoryTheory.instFinallySmallOppositeOfInitiallySmall
initiallySmall
instHasExactColimitsOfShapeOppositeElementsFiberOfLocallySmallOfAB5OfSizeOfHasFiniteLimits πŸ“–mathematicalβ€”CategoryTheory.HasExactColimitsOfShape
Opposite
CategoryTheory.Functor.Elements
fiber
CategoryTheory.Category.opposite
CategoryTheory.categoryOfElements
instHasColimitsOfShapeOppositeElementsFiber
β€”CategoryTheory.Limits.hasFilteredColimitsOfSize_of_hasColimitsOfSize
CategoryTheory.hasExactColimitsOfShape_of_final
CategoryTheory.isFiltered_op_of_isCofiltered
isCofiltered
CategoryTheory.instLocallySmallOpposite
CategoryTheory.CategoryOfElements.instLocallySmallElements
CategoryTheory.instFinallySmallOppositeOfInitiallySmall
initiallySmall
CategoryTheory.FinallySmall.instFinalFilteredFinalModelFromFilteredFinalModel
instHasColimitsOfShapeOppositeElementsFiber
CategoryTheory.Limits.hasColimitsOfShape_of_has_filtered_colimits
CategoryTheory.FinallySmall.instIsFilteredFilteredFinalModel
CategoryTheory.AB5OfSize.ofShape
instIsIsoMapFunctorOppositePresheafFiberToSheafify πŸ“–mathematicalβ€”CategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
presheafFiber
CategoryTheory.sheafify
CategoryTheory.Functor.map
CategoryTheory.toSheafify
β€”W_isInvertedBy_presheafFiber
CategoryTheory.GrothendieckTopology.W_toSheafify
instPreservesColimitsOfShapeOppositeElementsFiberForget πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.types
Opposite
CategoryTheory.Functor.Elements
fiber
CategoryTheory.Category.opposite
CategoryTheory.categoryOfElements
CategoryTheory.forget
β€”CategoryTheory.Functor.Final.preservesColimitsOfShape_of_final
CategoryTheory.isFiltered_op_of_isCofiltered
isCofiltered
CategoryTheory.instLocallySmallOpposite
CategoryTheory.CategoryOfElements.instLocallySmallElements
CategoryTheory.instFinallySmallOppositeOfInitiallySmall
initiallySmall
CategoryTheory.FinallySmall.instFinalFilteredFinalModelFromFilteredFinalModel
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
CategoryTheory.FinallySmall.instIsFilteredFilteredFinalModel
instPreservesColimitsOfSizeFunctorOppositePresheafFiber πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
presheafFiber
β€”instHasColimitsOfShapeOppositeElementsFiber
CategoryTheory.Limits.comp_preservesColimitsOfShape
CategoryTheory.whiskeringLeft_preservesColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.Limits.instIsLeftAdjointFunctorColim
instPreservesColimitsOfSizeSheafSheafFiberOfHasSheafifyOfWEqualsLocallyBijectiveOfReflectsIsomorphismsOfPreservesFilteredColimitsOfSizeForgetOfLocallySmall πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
sheafFiber
β€”CategoryTheory.Limits.preservesColimit_of_preserves_colimit_cocone
CategoryTheory.instHasWeakSheafifyOfHasSheafify
CategoryTheory.Limits.functorCategoryHasColimit
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape
instPreservesColimitsOfSizeFunctorOppositePresheafFiber
W_isInvertedBy_presheafFiber
CategoryTheory.GrothendieckTopology.W_toSheafify
CategoryTheory.Functor.map_comp
CategoryTheory.Sheaf.sheafifyCocone_ΞΉ_app_val
instPreservesFiniteLimitsFunctorOppositePresheafFiberOfLocallySmallOfHasFiniteLimitsOfAB5OfSize πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesFiniteLimits
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
presheafFiber
β€”CategoryTheory.Limits.hasFilteredColimitsOfSize_of_hasColimitsOfSize
CategoryTheory.Limits.comp_preservesFiniteLimits
instHasColimitsOfShapeOppositeElementsFiber
CategoryTheory.instPreservesFiniteLimitsFunctorObjWhiskeringLeftOfHasFiniteLimits
CategoryTheory.HasExactColimitsOfShape.preservesFiniteLimits
instHasExactColimitsOfShapeOppositeElementsFiberOfLocallySmallOfAB5OfSizeOfHasFiniteLimits
instPreservesFiniteLimitsSheafSheafFiberOfLocallySmallOfHasFiniteLimitsOfAB5OfSize πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesFiniteLimits
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
sheafFiber
β€”CategoryTheory.Limits.hasFilteredColimitsOfSize_of_hasColimitsOfSize
CategoryTheory.Limits.comp_preservesFiniteLimits
CategoryTheory.Sheaf.instPreservesFiniteLimitsFunctorOppositeSheafToPresheafOfHasFiniteLimits
instPreservesFiniteLimitsFunctorOppositePresheafFiberOfLocallySmallOfHasFiniteLimitsOfAB5OfSize
isCofiltered πŸ“–mathematicalβ€”CategoryTheory.IsCofiltered
CategoryTheory.Functor.Elements
fiber
CategoryTheory.categoryOfElements
β€”β€”
jointly_surjective πŸ“–mathematicalCategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.Functor.map
CategoryTheory.types
fiber
β€”β€”
presheafFiber_hom_ext πŸ“–β€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Functor
CategoryTheory.Functor.category
presheafFiber
toPresheafFiber
β€”β€”CategoryTheory.Limits.colimit.hom_ext
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
instHasColimitsOfShapeOppositeElementsFiber
presheafFiber_hom_ext_iff πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Functor
CategoryTheory.Functor.category
presheafFiber
toPresheafFiber
β€”presheafFiber_hom_ext
sheafFiberCompIso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.comp
CategoryTheory.sheafCompose
sheafFiber
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
sheafFiberCompIso
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringRight
presheafFiber
presheafFiberCompIso
CategoryTheory.Sheaf.val
β€”CategoryTheory.Category.comp_id
sheafFiberCompIso_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.comp
sheafFiber
CategoryTheory.sheafCompose
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
sheafFiberCompIso
Opposite
CategoryTheory.Category.opposite
presheafFiber
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringRight
presheafFiberCompIso
CategoryTheory.Sheaf.val
β€”CategoryTheory.Category.id_comp
toPresheafFiberNatTrans_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.evaluation
Opposite.op
presheafFiber
toPresheafFiberNatTrans
toPresheafFiber
β€”β€”
toPresheafFiber_eq_iff' πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Functor
CategoryTheory.Functor.category
presheafFiber
CategoryTheory.ConcreteCategory.hom
toPresheafFiber
CategoryTheory.Functor.map
CategoryTheory.types
fiber
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
β€”CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
instHasColimitsOfShapeOppositeElementsFiber
CategoryTheory.Limits.Types.FilteredColimit.isColimit_eq_iff'
CategoryTheory.isFilteredOrEmpty_op_of_isCofilteredOrEmpty
CategoryTheory.IsCofiltered.toIsCofilteredOrEmpty
isCofiltered
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
instPreservesColimitsOfShapeOppositeElementsFiberForget
toPresheafFiber_jointly_surjective πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Functor
CategoryTheory.Functor.category
presheafFiber
CategoryTheory.ConcreteCategory.hom
toPresheafFiber
β€”CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
instHasColimitsOfShapeOppositeElementsFiber
CategoryTheory.Limits.Types.jointly_surjective_of_isColimit
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
instPreservesColimitsOfShapeOppositeElementsFiberForget
toPresheafFiber_jointly_surjectiveβ‚‚ πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Functor
CategoryTheory.Functor.category
presheafFiber
CategoryTheory.ConcreteCategory.hom
toPresheafFiber
β€”CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
instHasColimitsOfShapeOppositeElementsFiber
CategoryTheory.Limits.Types.FilteredColimit.jointly_surjective_of_isColimitβ‚‚
CategoryTheory.isFilteredOrEmpty_op_of_isCofilteredOrEmpty
CategoryTheory.IsCofiltered.toIsCofilteredOrEmpty
isCofiltered
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
instPreservesColimitsOfShapeOppositeElementsFiberForget
toPresheafFiber_map_bijective πŸ“–mathematicalβ€”Function.Bijective
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
presheafFiber
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Functor.map
β€”toPresheafFiber_map_injective
toPresheafFiber_map_surjective
toPresheafFiber_map_injective πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
presheafFiber
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Functor.map
β€”jointly_surjective
CategoryTheory.Presheaf.equalizerSieve_mem
toPresheafFiber_jointly_surjectiveβ‚‚
toPresheafFiber_naturality_apply
toPresheafFiber_w_apply
toPresheafFiber_map_surjective πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
presheafFiber
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Functor.map
β€”toPresheafFiber_jointly_surjective
jointly_surjective
CategoryTheory.Presheaf.imageSieve_mem
toPresheafFiber_naturality_apply
CategoryTheory.comp_apply
toPresheafFiber_naturality πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Functor
CategoryTheory.Functor.category
presheafFiber
toPresheafFiber
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
β€”CategoryTheory.NatTrans.naturality
toPresheafFiber_naturality_apply πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
presheafFiber
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Functor.map
Opposite.op
toPresheafFiber
CategoryTheory.NatTrans.app
β€”CategoryTheory.comp_apply
Mathlib.Tactic.Elementwise.hom_elementwise
toPresheafFiber_naturality
toPresheafFiber_naturality_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Functor
CategoryTheory.Functor.category
presheafFiber
toPresheafFiber
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
toPresheafFiber_naturality
toPresheafFiber_presheafFiberCompIso_hom_app πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.comp
Opposite.op
CategoryTheory.Functor
CategoryTheory.Functor.category
presheafFiber
toPresheafFiber
CategoryTheory.NatTrans.app
CategoryTheory.Functor.whiskeringRight
CategoryTheory.Iso.hom
presheafFiberCompIso
CategoryTheory.Functor.map
β€”CategoryTheory.ΞΉ_preservesColimitIso_inv
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Functor.Final.preservesColimitsOfShape_of_final
CategoryTheory.isFiltered_op_of_isCofiltered
isCofiltered
CategoryTheory.instLocallySmallOpposite
CategoryTheory.CategoryOfElements.instLocallySmallElements
CategoryTheory.instFinallySmallOppositeOfInitiallySmall
initiallySmall
CategoryTheory.FinallySmall.instFinalFilteredFinalModelFromFilteredFinalModel
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
CategoryTheory.FinallySmall.instIsFilteredFilteredFinalModel
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
instHasColimitsOfShapeOppositeElementsFiber
toPresheafFiber_presheafFiberCompIso_hom_app_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Functor
CategoryTheory.Functor.category
presheafFiber
CategoryTheory.Functor.comp
toPresheafFiber
CategoryTheory.NatTrans.app
CategoryTheory.Functor.whiskeringRight
CategoryTheory.Iso.hom
presheafFiberCompIso
CategoryTheory.Functor.map
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
toPresheafFiber_presheafFiberCompIso_hom_app
toPresheafFiber_presheafFiberDesc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Functor
CategoryTheory.Functor.category
presheafFiber
toPresheafFiber
presheafFiberDesc
β€”CategoryTheory.Limits.colimit.ΞΉ_desc
toPresheafFiber_presheafFiberDesc_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Functor
CategoryTheory.Functor.category
presheafFiber
toPresheafFiber
presheafFiberDesc
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
toPresheafFiber_presheafFiberDesc
toPresheafFiber_w πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Functor
CategoryTheory.Functor.category
presheafFiber
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
toPresheafFiber
CategoryTheory.types
fiber
β€”CategoryTheory.Limits.colimit.w
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
instHasColimitsOfShapeOppositeElementsFiber
toPresheafFiber_w_apply πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Functor
CategoryTheory.Functor.category
presheafFiber
CategoryTheory.ConcreteCategory.hom
toPresheafFiber
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.types
fiber
β€”CategoryTheory.comp_apply
Mathlib.Tactic.Elementwise.hom_elementwise
toPresheafFiber_w
toPresheafFiber_w_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Functor
CategoryTheory.Functor.category
presheafFiber
toPresheafFiber
CategoryTheory.types
fiber
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
toPresheafFiber_w

---

← Back to Index