π Source: Mathlib/CategoryTheory/Sites/Point/Basic.lean
comap
fiber
presheafFiber
presheafFiberCompIso
presheafFiberDesc
presheafToSheafCompSheafFiber
sheafFiber
sheafFiberCompIso
toPresheafFiber
toPresheafFiberNatTrans
W_isInvertedBy_presheafFiber
comap_fiber
initiallySmall
instHasColimitsOfShapeOppositeElementsFiber
instHasExactColimitsOfShapeOppositeElementsFiberOfLocallySmallOfAB5OfSizeOfHasFiniteLimits
instIsIsoMapFunctorOppositePresheafFiberToSheafify
instPreservesColimitsOfShapeOppositeElementsFiberForget
instPreservesColimitsOfSizeFunctorOppositePresheafFiber
instPreservesColimitsOfSizeSheafSheafFiberOfHasSheafifyOfWEqualsLocallyBijectiveOfReflectsIsomorphismsOfPreservesFilteredColimitsOfSizeForgetOfLocallySmall
instPreservesFiniteLimitsFunctorOppositePresheafFiberOfLocallySmallOfHasFiniteLimitsOfAB5OfSize
instPreservesFiniteLimitsSheafSheafFiberOfLocallySmallOfHasFiniteLimitsOfAB5OfSize
isCofiltered
jointly_surjective
presheafFiber_hom_ext
presheafFiber_hom_ext_iff
sheafFiberCompIso_hom_app
sheafFiberCompIso_inv_app
toPresheafFiberNatTrans_app
toPresheafFiber_eq_iff'
toPresheafFiber_jointly_surjective
toPresheafFiber_jointly_surjectiveβ
toPresheafFiber_map_bijective
toPresheafFiber_map_injective
toPresheafFiber_map_surjective
toPresheafFiber_naturality
toPresheafFiber_naturality_apply
toPresheafFiber_naturality_assoc
toPresheafFiber_presheafFiberCompIso_hom_app
toPresheafFiber_presheafFiberCompIso_hom_app_assoc
toPresheafFiber_presheafFiberDesc
toPresheafFiber_presheafFiberDesc_assoc
toPresheafFiber_w
toPresheafFiber_w_apply
toPresheafFiber_w_assoc
Hom.presheafFiber_app
id_hom
comp_hom
comp_hom_assoc
Hom.presheafFiber_comp
Hom.presheafFiber_comp_assoc
Hom.presheafFiber_id
Hom.sheafFiber_comp_assoc
Hom.sheafFiber_comp
Hom.sheafFiber_id
CategoryTheory.MorphismProperty.IsInvertedBy
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.GrothendieckTopology.W
CategoryTheory.GrothendieckTopology.W_iff_isLocallyBijective
CategoryTheory.isIso_iff_of_reflects_iso
CategoryTheory.isIso_iff_bijective
CategoryTheory.CoverPreserving
CategoryTheory.Functor.comp
CategoryTheory.types
CategoryTheory.InitiallySmall
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
CategoryTheory.Limits.HasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_of_finallySmall
CategoryTheory.instFinallySmallOppositeOfInitiallySmall
CategoryTheory.HasExactColimitsOfShape
CategoryTheory.Limits.hasFilteredColimitsOfSize_of_hasColimitsOfSize
CategoryTheory.hasExactColimitsOfShape_of_final
CategoryTheory.isFiltered_op_of_isCofiltered
CategoryTheory.instLocallySmallOpposite
CategoryTheory.CategoryOfElements.instLocallySmallElements
CategoryTheory.FinallySmall.instFinalFilteredFinalModelFromFilteredFinalModel
CategoryTheory.Limits.hasColimitsOfShape_of_has_filtered_colimits
CategoryTheory.FinallySmall.instIsFilteredFilteredFinalModel
CategoryTheory.AB5OfSize.ofShape
CategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.sheafify
CategoryTheory.Functor.map
CategoryTheory.toSheafify
CategoryTheory.GrothendieckTopology.W_toSheafify
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.forget
CategoryTheory.Functor.Final.preservesColimitsOfShape_of_final
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
CategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.Limits.comp_preservesColimitsOfShape
CategoryTheory.whiskeringLeft_preservesColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.Limits.instIsLeftAdjointFunctorColim
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Limits.preservesColimit_of_preserves_colimit_cocone
CategoryTheory.instHasWeakSheafifyOfHasSheafify
CategoryTheory.Limits.functorCategoryHasColimit
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape
CategoryTheory.Functor.map_comp
CategoryTheory.Sheaf.sheafifyCocone_ΞΉ_app_val
CategoryTheory.Limits.PreservesFiniteLimits
CategoryTheory.Limits.comp_preservesFiniteLimits
CategoryTheory.instPreservesFiniteLimitsFunctorObjWhiskeringLeftOfHasFiniteLimits
CategoryTheory.HasExactColimitsOfShape.preservesFiniteLimits
CategoryTheory.Sheaf.instPreservesFiniteLimitsFunctorOppositeSheafToPresheafOfHasFiniteLimits
CategoryTheory.IsCofiltered
CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.op
CategoryTheory.Limits.colimit.hom_ext
CategoryTheory.NatTrans.app
CategoryTheory.sheafCompose
CategoryTheory.Iso.hom
CategoryTheory.Functor.whiskeringRight
CategoryTheory.Sheaf.val
CategoryTheory.Category.comp_id
CategoryTheory.Iso.inv
CategoryTheory.Category.id_comp
CategoryTheory.evaluation
CategoryTheory.ConcreteCategory.hom
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.Types.FilteredColimit.isColimit_eq_iff'
CategoryTheory.isFilteredOrEmpty_op_of_isCofilteredOrEmpty
CategoryTheory.IsCofiltered.toIsCofilteredOrEmpty
CategoryTheory.Limits.Types.jointly_surjective_of_isColimit
CategoryTheory.Limits.Types.FilteredColimit.jointly_surjective_of_isColimitβ
Function.Bijective
CategoryTheory.Presheaf.equalizerSieve_mem
CategoryTheory.Presheaf.imageSieve_mem
CategoryTheory.comp_apply
CategoryTheory.NatTrans.naturality
Mathlib.Tactic.Elementwise.hom_elementwise
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.ΞΉ_preservesColimitIso_inv
CategoryTheory.Limits.colimit.ΞΉ_desc
CategoryTheory.Limits.colimit.w
---
β Back to Index