Documentation

Mathlib.CategoryTheory.Sites.Point.Basic

Points of a site #

Let C be a category equipped with a Grothendieck topology J. In this file, we define the notion of point of the site (C, J), as a structure GrothendieckTopology.Point. Such a Φ : J.Point consists in a functor Φ.fiber : C ⥤ Type w such that the category Φ.fiber.Elements is cofiltered (and initially small) and such that if x : Φ.fiber.obj X and R is a covering sieve of X, then x belongs to the image of some y : Φ.fiber.obj Y by a morphism f : Y ⟶ X which belongs to R. (This definition is essentially the definition of a fiber functor on a site from SGA 4 IV 6.3.)

The fact that Φ.fiber.Elementsᵒᵖ is filtered allows to define Φ.presheafFiber : (Cᵒᵖ ⥤ A) ⥤ A by taking the filtering colimit of the evaluation functors at op X when (X : C, x : F.obj X) varies in Φ.fiber.Elementsᵒᵖ. We define Φ.sheafFiber : Sheaf J A ⥤ A as the restriction of Φ.presheafFiber to the full subcategory of sheaves.

Under certain assumptions, we show that if A is concrete and P ⟶ Q is a locally bijective morphism between presheaves, then the induced morphism on fibers is a bijection. It follows that not only Φ.sheafFiber : Sheaf J A ⥤ A is the restriction of Φ.presheafFiber but it may also be thought as a localization of this functor with respect to the class of morphisms J.W. In particular, the fiber of a presheaf identifies to the fiber of its associated sheaf.

Under suitable assumptions on the target category A, we show that both Φ.presheafFiber and Φ.sheafFiber commute with finite limits and with arbitrary colimits.

structure CategoryTheory.GrothendieckTopology.Point {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) :
Type (max (max u v) (w + 1))

Given J a Grothendieck topology on a category C, a point of the site (C, J) consists of a functor fiber : C ⥤ Type w such that the category fiber.Elements is initially small (which allows defining the fiber functor on presheaves by taking colimits) and cofiltered (so that the fiber functor on presheaves is exact), and such that covering sieves induce jointly surjective maps on fibers (which allows to show that the fibers of a presheaf and its associated sheaf are isomorphic).

Instances For

    The fiber functor on categories of presheaves that is given by a point of a site.

    Equations
      Instances For

        Given a point Φ of a site (C, J), X : C and x : Φ.fiber.obj X, this is the canonical map P.obj (op X) ⟶ Φ.presheafFiber.obj P.

        Equations
          Instances For

            Given a point Φ of a site (C, J), X : C and x : Φ.fiber.obj X, this is the map P.obj (op X) ⟶ Φ.presheafFiber.obj P for any P : Cᵒᵖ ⥤ A as a natural transformation.

            Equations
              Instances For
                @[simp]
                theorem CategoryTheory.GrothendieckTopology.Point.toPresheafFiber_w_apply {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} (Φ : J.Point) {A : Type u'} [Category.{v', u'} A] [Limits.HasColimitsOfSize.{w, w, v', u'} A] {X Y : C} (f : X Y) (x : Φ.fiber.obj X) (P : Functor Cᵒᵖ A) {F : AAType uF} {carrier : AType w_1} {instFunLike : (X Y : A) → FunLike (F X Y) (carrier X) (carrier Y)} [inst : ConcreteCategory A F] (x✝ : carrier (P.obj (Opposite.op Y))) :
                @[simp]
                theorem CategoryTheory.GrothendieckTopology.Point.toPresheafFiber_naturality_apply {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} (Φ : J.Point) {A : Type u'} [Category.{v', u'} A] [Limits.HasColimitsOfSize.{w, w, v', u'} A] {P Q : Functor Cᵒᵖ A} (g : P Q) (X : C) (x : Φ.fiber.obj X) {F : AAType uF} {carrier : AType w_1} {instFunLike : (X Y : A) → FunLike (F X Y) (carrier X) (carrier Y)} [inst : ConcreteCategory A F] (x✝ : carrier (P.obj (Opposite.op X))) :
                noncomputable def CategoryTheory.GrothendieckTopology.Point.presheafFiberDesc {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} (Φ : J.Point) {A : Type u'} [Category.{v', u'} A] [Limits.HasColimitsOfSize.{w, w, v', u'} A] {P : Functor Cᵒᵖ A} {T : A} (φ : (X : C) → Φ.fiber.obj X → (P.obj (Opposite.op X) T)) ( : ∀ ⦃X Y : C⦄ (f : X Y) (x : Φ.fiber.obj X), CategoryStruct.comp (P.map f.op) (φ X x) = φ Y (Φ.fiber.map f x) := by cat_disch) :

                Constructor for morphisms from the fiber of a presheaf.

                Equations
                  Instances For
                    @[simp]
                    theorem CategoryTheory.GrothendieckTopology.Point.toPresheafFiber_presheafFiberDesc {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} (Φ : J.Point) {A : Type u'} [Category.{v', u'} A] [Limits.HasColimitsOfSize.{w, w, v', u'} A] {P : Functor Cᵒᵖ A} {T : A} (φ : (X : C) → Φ.fiber.obj X → (P.obj (Opposite.op X) T)) ( : ∀ ⦃X Y : C⦄ (f : X Y) (x : Φ.fiber.obj X), CategoryStruct.comp (P.map f.op) (φ X x) = φ Y (Φ.fiber.map f x) := by cat_disch) (X : C) (x : Φ.fiber.obj X) :
                    @[simp]
                    theorem CategoryTheory.GrothendieckTopology.Point.toPresheafFiber_presheafFiberDesc_assoc {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} (Φ : J.Point) {A : Type u'} [Category.{v', u'} A] [Limits.HasColimitsOfSize.{w, w, v', u'} A] {P : Functor Cᵒᵖ A} {T : A} (φ : (X : C) → Φ.fiber.obj X → (P.obj (Opposite.op X) T)) ( : ∀ ⦃X Y : C⦄ (f : X Y) (x : Φ.fiber.obj X), CategoryStruct.comp (P.map f.op) (φ X x) = φ Y (Φ.fiber.map f x) := by cat_disch) (X : C) (x : Φ.fiber.obj X) {Z : A} (h : T Z) :
                    theorem CategoryTheory.GrothendieckTopology.Point.toPresheafFiber_eq_iff' {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} (Φ : J.Point) {A : Type u'} [Category.{v', u'} A] [Limits.HasColimitsOfSize.{w, w, v', u'} A] {FC : AAType u_1} {CC : AType w'} [(X Y : A) → FunLike (FC X Y) (CC X) (CC Y)] [ConcreteCategory A FC] {P : Functor Cᵒᵖ A} [Limits.PreservesFilteredColimitsOfSize.{w, w, v', w', u', w' + 1} (forget A)] [LocallySmall.{w, v, u} C] (X : C) (x : Φ.fiber.obj X) (z₁ z₂ : ToType (P.obj (Opposite.op X))) :
                    (ConcreteCategory.hom (Φ.toPresheafFiber X x P)) z₁ = (ConcreteCategory.hom (Φ.toPresheafFiber X x P)) z₂ ∃ (Y : C) (f : Y X) (y : Φ.fiber.obj Y), Φ.fiber.map f y = x (ConcreteCategory.hom (P.map f.op)) z₁ = (ConcreteCategory.hom (P.map f.op)) z₂
                    @[reducible, inline]

                    The fiber functor on the category of sheaves that is given a by a point of a site.

                    Equations
                      Instances For

                        The fiber functor on sheaves is obtained from the fiber functor on presheaves by localization with respect to the class of morphisms J.W.

                        Equations
                          Instances For

                            If Φ is a point of a site and F : A ⥤ B is a functor which preserves filtered colimits, then taking fibers of presheaves at Φ commutes with F.

                            Equations
                              Instances For

                                If Φ is a point of a site and F : A ⥤ B is a functor which preserves filtered colimits, then taking fibers of sheaves at Φ commutes with F.

                                Equations
                                  Instances For

                                    If F : C ⥤ D is a representably flat and cover preserving functor between sites, then any point on D induces a point on C by precomposing the fiber functor with F.

                                    Equations
                                      Instances For