Documentation Verification Report

RegularEpi

📁 Source: Mathlib/CategoryTheory/Sites/RegularEpi.lean

Statistics

MetricCount
DefinitionsRegularEpi
1
TheoremsinstIsRegularEpiCategorySheafTypeOfHasSheafify, isRegularEpiCategory_sheaf
2
Total3

CategoryTheory

Definitions

NameCategoryTheorems
RegularEpi 📖CompData
1 mathmath: IsRegularEpi.regularEpi

Theorems

NameKindAssumesProvesValidatesDepends On
instIsRegularEpiCategorySheafTypeOfHasSheafify 📖mathematicalIsRegularEpiCategory
Sheaf
types
Sheaf.instCategorySheaf
isRegularEpiCategory_sheaf
Limits.Types.instHasPullbacksType
Limits.hasColimitsOfShape_widePushoutShape
Finite.of_fintype
Limits.hasFiniteWidePushouts_of_has_finite_limits
Limits.hasFiniteColimits_of_hasColimits
Limits.Types.hasColimitsOfSize
UnivLE.self
regularEpiCategoryOfSplitEpiCategory
instSplitEpiCategoryType
Limits.HasImages.has_image
FunctorToTypes.instHasImagesFunctorType
Limits.instEpiFactorThruImageOfHasLimitWalkingParallelPairParallelPair
Limits.functorCategoryHasLimit
Limits.Types.hasLimit
UnivLE.small
univLE_of_max
Limits.instMonoι
Limits.image.fac
SheafOfTypes.balanced
isRegularEpiCategory_sheaf 📖mathematicalEpi
Functor
Opposite
Category.opposite
Functor.category
Sheaf.val
Mono
CategoryStruct.comp
Category.toCategoryStruct
Sheaf.Hom.val
IsRegularEpiCategory
Sheaf
Sheaf.instCategorySheaf
instHasWeakSheafifyOfHasSheafify
isIso_sheafificationAdjunction_counit
Adjunction.counit_naturality
Category.assoc
IsIso.inv_hom_id
Category.comp_id
IsIso.inv_hom_id_assoc
epi_comp
Sheaf.Hom.epi_of_presheaf_epi
epi_of_effectiveEpi
IsSplitEpi.EffectiveEpi
IsSplitEpi.of_iso
instIsIsoFunctorOppositeValAppSheafCounitSheafificationAdjunction
IsIso.inv_isIso
epi_of_epi
Functor.map_comp
Balanced.isIso_of_mono_of_epi
Functor.map_mono
preservesMonomorphisms_of_preservesLimitsOfShape
Limits.PreservesFiniteLimits.preservesFiniteLimits
instPreservesFiniteLimitsFunctorOppositeSheafPresheafToSheaf
isRegularEpi_iff_effectiveEpi
Limits.hasPullbackHorizPaste
Limits.hasPullbackVertPaste
Limits.has_kernel_pair_of_mono
instMonoAppOfFunctor
Sheaf.instHasLimitsOfShape
mono_of_strongMono
instStrongMonoOfIsRegularMono
instIsRegularMonoOfIsSplitMono
IsSplitMono.of_iso
sheafification_reflective
Limits.hasLimitOfHasLimitsOfShape
IsPullback.instHasPullbackFst
Presieve.instHasPullbackOfHasPairwisePullbacksOfArrows
Presieve.instHasPairwisePullbacksOfHasPullbacks
cancel_mono
Limits.pullback.condition
IsRegularEpiCategory.regularEpiOfEpi
Functor.instIsRegularEpiCategoryOfForallEpiHasPullbackOfHasPushouts
Limits.PullbackCone.condition
Limits.PreservesColimitsOfShape.preservesColimit
Limits.PreservesFiniteColimits.preservesFiniteColimits
Limits.PreservesColimits.preservesFiniteColimits
Functor.instPreservesColimitsOfSizeOfIsLeftAdjoint
instIsLeftAdjointFunctorOppositeSheafPresheafToSheaf
instEffectiveEpiOfIsRegularEpi
preservesLimit_of_createsLimit_and_hasLimit
Limits.functorCategoryHasLimit
instEffectiveEpiOfEffectiveEpiFamily
instEffectiveEpiFamilyComp
instEffectiveEpiFamily
instEffectiveEpiFamilyCompOfIsSplitEpi

---

← Back to Index