Documentation

Mathlib.CategoryTheory.Limits.Shapes.RegularMono

Definitions and basic properties of regular monomorphisms and epimorphisms. #

A regular monomorphism is a morphism that is the equalizer of some parallel pair.

In this file, we give the following definitions.

Additionally, we give the constructions

We also define classes IsRegularMonoCategory and IsRegularEpiCategory for categories in which every monomorphism or epimorphism is regular, and deduce that these categories are StrongMonoCategorys resp. StrongEpiCategorys.

structure CategoryTheory.RegularMono {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (f : X Y) :
Type (max u₁ v₁)

A regular monomorphism is a morphism which is the equalizer of some parallel pair.

Instances For
    theorem CategoryTheory.RegularMono.w_assoc {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} {f : X Y} (self : RegularMono f) {Z : C} (h : self.Z Z) :

    f equalizes the two maps

    theorem CategoryTheory.RegularMono.mono {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} {f : X Y} (h : RegularMono f) :

    Every regular monomorphism is a monomorphism.

    Every isomorphism is a regular monomorphism.

    Equations
      Instances For
        def CategoryTheory.RegularMono.ofArrowIso {C : Type u₁} [Category.{v₁, u₁} C] {X Y X' Y' : C} {f : X Y} {g : X' Y'} (e : Arrow.mk f Arrow.mk g) (h : RegularMono f) :

        Regular monomorphisms are preserved by isomorphisms in the arrow category.

        Equations
          Instances For
            class CategoryTheory.IsRegularMono {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (f : X Y) :

            IsRegularMono f is the assertion that f is a regular monomorphism.

            Instances

              The MorphismProperty C satisfied by regular monomorphisms in C.

              Equations
                Instances For

                  Given IsRegularMono f, a choice of data for RegularMono f.

                  Equations
                    Instances For
                      @[deprecated CategoryTheory.IsRegularMono.getStruct (since := "2025-12-01")]

                      Alias of CategoryTheory.IsRegularMono.getStruct.


                      Given IsRegularMono f, a choice of data for RegularMono f.

                      Equations
                        Instances For

                          Given a regular monomorphism f : X ⟶ Y (i.e. a morphism satisfying the predicate IsRegularMono), this section gives an equalizer diagram

                               X
                              f|
                               v
                               Y
                          left| |right
                              v v
                               Z
                          

                          The names Z, left, and right all being in the IsRegularMono namespace.

                          def CategoryTheory.IsRegularMono.Z {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (f : X Y) [IsRegularMono f] :
                          C

                          The target of the equalizer diagram for f.

                          Equations
                            Instances For
                              def CategoryTheory.IsRegularMono.left {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (f : X Y) [IsRegularMono f] :
                              Y Z f

                              The "left" map Y ⟶ Z.

                              Equations
                                Instances For
                                  def CategoryTheory.IsRegularMono.right {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (f : X Y) [IsRegularMono f] :
                                  Y Z f

                                  The "right" map Y ⟶ Z.

                                  Equations
                                    Instances For

                                      The equalizer condition.

                                      The fork is in fact an equalizer.

                                      Equations
                                        Instances For
                                          def CategoryTheory.IsRegularMono.lift {C : Type u₁} [Category.{v₁, u₁} C] {X Y W : C} (f : X Y) [IsRegularMono f] (k : W Y) (h : CategoryStruct.comp k (left f) = CategoryStruct.comp k (right f)) :
                                          W X

                                          Lift a morphism k : W ⟶ Y, equalized by the two morphisms left and right, along f.

                                          Equations
                                            Instances For
                                              @[simp]
                                              theorem CategoryTheory.IsRegularMono.fac {C : Type u₁} [Category.{v₁, u₁} C] {X Y W : C} (f : X Y) [IsRegularMono f] (k : W Y) (h : CategoryStruct.comp k (left f) = CategoryStruct.comp k (right f)) :
                                              @[simp]
                                              theorem CategoryTheory.IsRegularMono.fac_assoc {C : Type u₁} [Category.{v₁, u₁} C] {X Y W : C} (f : X Y) [IsRegularMono f] (k : W Y) (h : CategoryStruct.comp k (left f) = CategoryStruct.comp k (right f)) {Z : C} (h✝ : Y Z) :
                                              theorem CategoryTheory.IsRegularMono.uniq {C : Type u₁} [Category.{v₁, u₁} C] {X Y W : C} (f : X Y) [IsRegularMono f] (k : W Y) (h : CategoryStruct.comp k (left f) = CategoryStruct.comp k (right f)) (m : W X) (hm : CategoryStruct.comp m f = k) :
                                              m = lift f k h

                                              The chosen equalizer of a parallel pair is a regular monomorphism.

                                              Equations
                                                Instances For

                                                  Every split monomorphism is a regular monomorphism.

                                                  Equations
                                                    Instances For
                                                      def CategoryTheory.RegularMono.lift' {C : Type u₁} [Category.{v₁, u₁} C] {X Y W : C} {f : X Y} (hf : RegularMono f) (k : W Y) (h : CategoryStruct.comp k hf.left = CategoryStruct.comp k hf.right) :

                                                      If f is a regular mono, then any map k : W ⟶ Y equalizing RegularMono.left and RegularMono.right induces a morphism l : W ⟶ X such that l ≫ f = k.

                                                      Equations
                                                        Instances For
                                                          def CategoryTheory.regularOfIsPullbackSndOfRegular {C : Type u₁} [Category.{v₁, u₁} C] {P Q R S : C} {f : P Q} {g : P R} {h : Q S} {k : R S} (hr : RegularMono h) (comm : CategoryStruct.comp f h = CategoryStruct.comp g k) (t : Limits.IsLimit (Limits.PullbackCone.mk f g comm)) :

                                                          The second leg of a pullback cone is a regular monomorphism if the right component is too.

                                                          See also Pullback.sndOfMono for the basic monomorphism version, and regularOfIsPullbackFstOfRegular for the flipped version.

                                                          Equations
                                                            Instances For
                                                              def CategoryTheory.regularOfIsPullbackFstOfRegular {C : Type u₁} [Category.{v₁, u₁} C] {P Q R S : C} {f : P Q} {g : P R} {h : Q S} {k : R S} (hk : RegularMono k) (comm : CategoryStruct.comp f h = CategoryStruct.comp g k) (t : Limits.IsLimit (Limits.PullbackCone.mk f g comm)) :

                                                              The first leg of a pullback cone is a regular monomorphism if the left component is too.

                                                              See also Pullback.fstOfMono for the basic monomorphism version, and regularOfIsPullbackSndOfRegular for the flipped version.

                                                              Equations
                                                                Instances For
                                                                  theorem CategoryTheory.RegularMono.strongMono {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} {f : X Y} (h : RegularMono f) :

                                                                  Any regular monomorphism is a strong monomorphism.

                                                                  theorem CategoryTheory.isIso_of_regularMono_of_epi {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (f : X Y) (h : RegularMono f) [Epi f] :

                                                                  A regular monomorphism is an isomorphism if it is an epimorphism.

                                                                  A regular mono category is a category in which every monomorphism is regular.

                                                                  • regularMonoOfMono {X Y : C} (f : X Y) [Mono f] : IsRegularMono f

                                                                    Every monomorphism is a regular monomorphism

                                                                  Instances

                                                                    In a category in which every monomorphism is regular, we can express every monomorphism as an equalizer. This is not an instance because it would create an instance loop.

                                                                    Equations
                                                                      Instances For
                                                                        structure CategoryTheory.RegularEpi {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (f : X Y) :
                                                                        Type (max u₁ v₁)

                                                                        A regular epimorphism is a morphism which is the coequalizer of some parallel pair.

                                                                        Instances For
                                                                          theorem CategoryTheory.RegularEpi.w_assoc {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} {f : X Y} (self : RegularEpi f) {Z : C} (h : Y Z) :

                                                                          f coequalizes the two maps

                                                                          theorem CategoryTheory.RegularEpi.epi {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (f : X Y) (h : RegularEpi f) :
                                                                          Epi f

                                                                          Every regular epimorphism is an epimorphism.

                                                                          Every isomorphism is a regular epimorphism.

                                                                          Equations
                                                                            Instances For
                                                                              def CategoryTheory.RegularEpi.ofArrowIso {C : Type u₁} [Category.{v₁, u₁} C] {X Y X' Y' : C} {f : X Y} {g : X' Y'} (e : Arrow.mk f Arrow.mk g) (h : RegularEpi f) :

                                                                              Regular epimorphisms are preserved by isomorphisms in the arrow category.

                                                                              Equations
                                                                                Instances For
                                                                                  class CategoryTheory.IsRegularEpi {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (f : X Y) :

                                                                                  IsRegularEpi f is the assertion that f is a regular epimorphism.

                                                                                  Instances

                                                                                    The MorphismProperty C satisfied by regular epimorphisms in C.

                                                                                    Equations
                                                                                      Instances For

                                                                                        Given IsRegularEpi f, a choice of data for RegularEpi f.

                                                                                        Equations
                                                                                          Instances For
                                                                                            @[deprecated CategoryTheory.IsRegularEpi.getStruct (since := "2025-12-01")]

                                                                                            Alias of CategoryTheory.IsRegularEpi.getStruct.


                                                                                            Given IsRegularEpi f, a choice of data for RegularEpi f.

                                                                                            Equations
                                                                                              Instances For

                                                                                                Given a regular epimorphism f : X ⟶ Y (i.e. a morphism satisfying the predicate IsRegularEpi), this section gives a coequalizer diagram

                                                                                                     W
                                                                                                left| |right
                                                                                                    v v
                                                                                                     X
                                                                                                    f|
                                                                                                     v
                                                                                                     Y
                                                                                                

                                                                                                The names W, left, and right all being in the IsRegularEpi namespace.

                                                                                                def CategoryTheory.IsRegularEpi.W {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (f : X Y) [IsRegularEpi f] :
                                                                                                C

                                                                                                The source of the coequalizer diagram for f.

                                                                                                Equations
                                                                                                  Instances For
                                                                                                    def CategoryTheory.IsRegularEpi.left {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (f : X Y) [IsRegularEpi f] :
                                                                                                    W f X

                                                                                                    The "left" map W ⟶ X.

                                                                                                    Equations
                                                                                                      Instances For
                                                                                                        def CategoryTheory.IsRegularEpi.right {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (f : X Y) [IsRegularEpi f] :
                                                                                                        W f X

                                                                                                        The "right" map W ⟶ X.

                                                                                                        Equations
                                                                                                          Instances For

                                                                                                            The coequalizer condition.

                                                                                                            The cofork is in fact a coequalizer.

                                                                                                            Equations
                                                                                                              Instances For
                                                                                                                def CategoryTheory.IsRegularEpi.desc {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} (f : X Y) [IsRegularEpi f] (k : X Z) (h : CategoryStruct.comp (left f) k = CategoryStruct.comp (right f) k) :
                                                                                                                Y Z

                                                                                                                Descend a morphism k : X ⟶ Z, coequalized by the two morphisms left and right, along f.

                                                                                                                Equations
                                                                                                                  Instances For
                                                                                                                    @[simp]
                                                                                                                    theorem CategoryTheory.IsRegularEpi.fac {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} (f : X Y) [IsRegularEpi f] (k : X Z) (h : CategoryStruct.comp (left f) k = CategoryStruct.comp (right f) k) :
                                                                                                                    @[simp]
                                                                                                                    theorem CategoryTheory.IsRegularEpi.fac_assoc {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} (f : X Y) [IsRegularEpi f] (k : X Z) (h : CategoryStruct.comp (left f) k = CategoryStruct.comp (right f) k) {Z✝ : C} (h✝ : Z Z✝) :
                                                                                                                    theorem CategoryTheory.IsRegularEpi.uniq {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} (f : X Y) [IsRegularEpi f] (k : X Z) (h : CategoryStruct.comp (left f) k = CategoryStruct.comp (right f) k) (m : Y Z) (hm : CategoryStruct.comp f m = k) :
                                                                                                                    m = desc f k h

                                                                                                                    The chosen coequalizer of a parallel pair is a regular epimorphism.

                                                                                                                    Equations
                                                                                                                      Instances For

                                                                                                                        A morphism which is a coequalizer for its kernel pair is a regular epi.

                                                                                                                        Equations
                                                                                                                          Instances For

                                                                                                                            The data of an EffectiveEpi structure on a RegularEpi.

                                                                                                                            Equations
                                                                                                                              Instances For
                                                                                                                                @[instance 100]

                                                                                                                                A morphism which is a coequalizer for its kernel pair is an effective epi.

                                                                                                                                @[deprecated CategoryTheory.effectiveEpi_of_kernelPair (since := "2025-11-20")]

                                                                                                                                Alias of CategoryTheory.effectiveEpi_of_kernelPair.


                                                                                                                                A morphism which is a coequalizer for its kernel pair is an effective epi.

                                                                                                                                Given a kernel pair of an effective epimorphism f : X ⟶ B, the induced cofork is a coequalizer.

                                                                                                                                Equations
                                                                                                                                  Instances For

                                                                                                                                    An effective epi which has a kernel pair is a regular epi.

                                                                                                                                    Equations
                                                                                                                                      Instances For
                                                                                                                                        noncomputable def CategoryTheory.EffectiveEpiStruct.isColimitCoforkOfIsPullback {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} {p : Y X} (hp : EffectiveEpiStruct p) {p₁ p₂ : Z Y} (sq : IsPullback p₁ p₂ p p) :

                                                                                                                                        Let p : Y ⟶ X be an effective epimorphism, p₁ : Z ⟶ Y and p₂ : Z ⟶ Y two morphisms which make Z the pullback of two copies of Y over X. Then, Y ⟶ X is the coequalizer of p₁ and p₂.

                                                                                                                                        Equations
                                                                                                                                          Instances For

                                                                                                                                            Every split epimorphism is a regular epimorphism.

                                                                                                                                            Equations
                                                                                                                                              Instances For
                                                                                                                                                def CategoryTheory.RegularEpi.desc' {C : Type u₁} [Category.{v₁, u₁} C] {X Y W : C} {f : X Y} (hf : RegularEpi f) (k : X W) (h : CategoryStruct.comp hf.left k = CategoryStruct.comp hf.right k) :

                                                                                                                                                If f is a regular epi, then every morphism k : X ⟶ W coequalizing RegularEpi.left and RegularEpi.right induces l : Y ⟶ W such that f ≫ l = k.

                                                                                                                                                Equations
                                                                                                                                                  Instances For
                                                                                                                                                    def CategoryTheory.regularOfIsPushoutSndOfRegular {C : Type u₁} [Category.{v₁, u₁} C] {P Q R S : C} {f : P Q} {g : P R} {h : Q S} {k : R S} (gr : RegularEpi g) (comm : CategoryStruct.comp f h = CategoryStruct.comp g k) (t : Limits.IsColimit (Limits.PushoutCocone.mk h k comm)) :

                                                                                                                                                    The second leg of a pushout cocone is a regular epimorphism if the right component is too.

                                                                                                                                                    See also Pushout.sndOfEpi for the basic epimorphism version, and regularOfIsPushoutFstOfRegular for the flipped version.

                                                                                                                                                    Equations
                                                                                                                                                      Instances For
                                                                                                                                                        def CategoryTheory.regularOfIsPushoutFstOfRegular {C : Type u₁} [Category.{v₁, u₁} C] {P Q R S : C} {f : P Q} {g : P R} {h : Q S} {k : R S} (hf : RegularEpi f) (comm : CategoryStruct.comp f h = CategoryStruct.comp g k) (t : Limits.IsColimit (Limits.PushoutCocone.mk h k comm)) :

                                                                                                                                                        The first leg of a pushout cocone is a regular epimorphism if the left component is too.

                                                                                                                                                        See also Pushout.fstOfEpi for the basic epimorphism version, and regularOfIsPushoutSndOfRegular for the flipped version.

                                                                                                                                                        Equations
                                                                                                                                                          Instances For
                                                                                                                                                            @[deprecated "No replacement" (since := "2025-11-20")]
                                                                                                                                                            theorem CategoryTheory.strongEpi_of_regularEpi {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (f : X Y) (h : RegularEpi f) :
                                                                                                                                                            theorem CategoryTheory.isIso_of_regularEpi_of_mono {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (f : X Y) (h : RegularEpi f) [Mono f] :

                                                                                                                                                            A regular epimorphism is an isomorphism if it is a monomorphism.

                                                                                                                                                            A regular epi category is a category in which every epimorphism is regular.

                                                                                                                                                            • regularEpiOfEpi {X Y : C} (f : X Y) [Epi f] : IsRegularEpi f

                                                                                                                                                              Everyone epimorphism is a regular epimorphism

                                                                                                                                                            Instances

                                                                                                                                                              In a category in which every epimorphism is regular, we can express every epimorphism as a coequalizer. This is not an instance because it would create an instance loop.

                                                                                                                                                              Equations
                                                                                                                                                                Instances For