Documentation Verification Report

Subsheaf

📁 Source: Mathlib/CategoryTheory/Sites/Subsheaf.lean

Statistics

MetricCount
Definitionsimage, imageι, toImage, sheafify, sheafifyLift, toRangeSheafify, sheafify, sheafifyLift, toRangeSheafify, imageFactorization, imageMonoFactorization
11
Theoremsimage_val, imageι_val, toImage_val, toImage_ι, toImage_ι_assoc, eq_sheafify, eq_sheafify_iff, isSeparated, isSheaf_iff, le_sheafify, sheafify_isSheaf, sheafify_le, sheafify_sheafify, toRangeSheafify_app_coe, to_sheafifyLift, to_sheafify_lift_unique, eq_sheafify, eq_sheafify_iff, isSeparated, isSheaf_iff, le_sheafify, sheafify_isSheaf, sheafify_le, sheafify_sheafify, to_sheafifyLift, to_sheafify_lift_unique, instEpiSheafTypeToImage, instHasImagesSheafType, instMonoSheafTypeImageι
29
Total40

CategoryTheory

Definitions

NameCategoryTheorems
imageFactorization 📖CompOp
imageMonoFactorization 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
instEpiSheafTypeToImage 📖mathematicalEpi
Sheaf
types
Sheaf.instCategorySheaf
Sheaf.image
Sheaf.toImage
Sheaf.hom_ext
NatTrans.ext'
types_ext
Presieve.IsSeparatedFor.ext
Presieve.IsSheafFor.isSeparatedFor
isSheaf_iff_isSheaf_of_type
Sheaf.cond
NatTrans.naturality
instHasImagesSheafType 📖mathematicalLimits.HasImages
Sheaf
types
Sheaf.instCategorySheaf
instMonoSheafTypeImageι 📖mathematicalMono
Sheaf
types
Sheaf.instCategorySheaf
Sheaf.image
Sheaf.imageι
Functor.mono_of_mono_map
reflectsMonomorphisms_of_reflectsLimitsOfShape
Limits.reflectsLimitsOfShape_of_reflectsLimits
Limits.fullyFaithful_reflectsLimits
instFullSheafFunctorOppositeSheafToPresheaf
instFaithfulSheafFunctorOppositeSheafToPresheaf
Subfunctor.instMonoFunctorTypeι

CategoryTheory.Sheaf

Definitions

NameCategoryTheorems
image 📖CompOp
10 mathmath: instIsLocallySurjectiveHomToImage, toImage_ι_assoc, CategoryTheory.instEpiSheafTypeToImage, toImage_ι, imageι_val, toImage_val, instIsLocallyInjectiveHomImageι, isLocallySurjective_iff_isIso, CategoryTheory.instMonoSheafTypeImageι, image_val
imageι 📖CompOp
6 mathmath: toImage_ι_assoc, toImage_ι, imageι_val, instIsLocallyInjectiveHomImageι, isLocallySurjective_iff_isIso, CategoryTheory.instMonoSheafTypeImageι
toImage 📖CompOp
5 mathmath: instIsLocallySurjectiveHomToImage, toImage_ι_assoc, CategoryTheory.instEpiSheafTypeToImage, toImage_ι, toImage_val

Theorems

NameKindAssumesProvesValidatesDepends On
image_val 📖mathematicalval
CategoryTheory.types
image
CategoryTheory.Subfunctor.toFunctor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Subfunctor.sheafify
CategoryTheory.Subfunctor.range
Hom.val
imageι_val 📖mathematicalHom.val
CategoryTheory.types
image
imageι
CategoryTheory.Subfunctor.ι
Opposite
CategoryTheory.Category.opposite
val
CategoryTheory.Subfunctor.sheafify
CategoryTheory.Subfunctor.range
toImage_val 📖mathematicalHom.val
CategoryTheory.types
image
toImage
CategoryTheory.Subfunctor.toRangeSheafify
val
toImage_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Sheaf
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
instCategorySheaf
image
toImage
imageι
hom_ext
CategoryTheory.Category.assoc
CategoryTheory.Subfunctor.homOfLe_ι
toImage_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Sheaf
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
instCategorySheaf
image
toImage
imageι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
toImage_ι

CategoryTheory.Subfunctor

Definitions

NameCategoryTheorems
sheafify 📖CompOp
20 mathmath: sheafify_sheafify, sheafify_le, CategoryTheory.Subpresheaf.sheafify_sheafify, CategoryTheory.Sheaf.imageι_val, CategoryTheory.Subpresheaf.sheafify_le, le_sheafify, CategoryTheory.Presheaf.isLocallySurjective_iff_range_sheafify_eq_top, CategoryTheory.Subpresheaf.eq_sheafify, CategoryTheory.Presheaf.isLocallySurjective_iff_range_sheafify_eq_top', sheafify_isSheaf, CategoryTheory.Subpresheaf.sheafify_isSheaf, CategoryTheory.Presheaf.instIsLocallySurjectiveHomToRangeSheafify, toRangeSheafify_app_coe, CategoryTheory.Subpresheaf.eq_sheafify_iff, CategoryTheory.Subpresheaf.le_sheafify, eq_sheafify, to_sheafifyLift, CategoryTheory.Subpresheaf.to_sheafifyLift, eq_sheafify_iff, CategoryTheory.Sheaf.image_val
sheafifyLift 📖CompOp
2 mathmath: to_sheafifyLift, CategoryTheory.Subpresheaf.to_sheafifyLift
toRangeSheafify 📖CompOp
3 mathmath: CategoryTheory.Sheaf.toImage_val, CategoryTheory.Presheaf.instIsLocallySurjectiveHomToRangeSheafify, toRangeSheafify_app_coe

Theorems

NameKindAssumesProvesValidatesDepends On
eq_sheafify 📖mathematicalCategoryTheory.Presieve.IsSheaf
toFunctor
Opposite
CategoryTheory.Category.opposite
sheafifyLE.le.antisymm
le_sheafify
family_of_elements_compatible
CategoryTheory.Presieve.IsSeparatedFor.ext
CategoryTheory.Presieve.IsSheafFor.isSeparatedFor
CategoryTheory.Presieve.IsSheafFor.valid_glue
eq_sheafify_iff 📖mathematicalCategoryTheory.Presieve.IsSheafsheafify
toFunctor
Opposite
CategoryTheory.Category.opposite
sheafify_isSheaf
eq_sheafify
isSeparated 📖mathematicalCategoryTheory.Presieve.IsSeparatedtoFunctor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Presieve.FamilyOfElements.IsAmalgamation.map
isSheaf_iff 📖mathematicalCategoryTheory.Presieve.IsSheaftoFunctor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.obj
CategoryTheory.types
Set
Set.instMembership
obj
eq_sheafify_iff
Eq.ge
LE.le.antisymm
le_sheafify
le_sheafify 📖mathematicalCategoryTheory.Subfunctor
Opposite
CategoryTheory.Category.opposite
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
sheafify
eq_top_iff
map
CategoryTheory.GrothendieckTopology.top_mem
sheafify_isSheaf 📖mathematicalCategoryTheory.Presieve.IsSheaftoFunctor
Opposite
CategoryTheory.Category.opposite
sheafify
CategoryTheory.Presieve.IsSeparated.isSheaf
isSeparated
CategoryTheory.Presieve.IsSheaf.isSeparated
CategoryTheory.Presieve.IsSeparatedFor.ext
CategoryTheory.Presieve.IsSheafFor.isSeparatedFor
CategoryTheory.Functor.map_comp
CategoryTheory.op_comp
CategoryTheory.FunctorToTypes.map_comp_apply
CategoryTheory.Category.assoc
CategoryTheory.GrothendieckTopology.bind_covering
CategoryTheory.GrothendieckTopology.superset_covering
sheafify_le 📖mathematicalCategoryTheory.Subfunctor
Opposite
CategoryTheory.Category.opposite
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
CategoryTheory.Presieve.IsSheaf
toFunctor
sheafifyCategoryTheory.Presieve.IsSeparatedFor.ext
CategoryTheory.Presieve.IsSheafFor.isSeparatedFor
le_sheafify
to_sheafifyLift
nat_trans_naturality
sheafify_sheafify 📖mathematicalCategoryTheory.Presieve.IsSheafsheafifyeq_sheafify_iff
sheafify_isSheaf
toRangeSheafify_app_coe 📖mathematicalCategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Set
Set.instMembership
obj
sheafify
range
CategoryTheory.NatTrans.app
toFunctor
toRangeSheafify
Set.range
toRange
to_sheafifyLift 📖mathematicalCategoryTheory.Presieve.IsSheafCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
toFunctor
sheafify
homOfLe
le_sheafify
sheafifyLift
CategoryTheory.NatTrans.ext'
le_sheafify
CategoryTheory.types_ext
CategoryTheory.Presieve.IsSeparatedFor.ext
CategoryTheory.Presieve.IsSheafFor.isSeparatedFor
Subtype.prop
CategoryTheory.comp_apply
Mathlib.Tactic.Elementwise.hom_elementwise
CategoryTheory.NatTrans.naturality
CategoryTheory.Presieve.FamilyOfElements.Compatible.map
family_of_elements_compatible
CategoryTheory.Presieve.IsSheafFor.valid_glue
to_sheafify_lift_unique 📖CategoryTheory.Presieve.IsSheaf
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
toFunctor
sheafify
homOfLe
le_sheafify
le_sheafify
CategoryTheory.NatTrans.ext'
CategoryTheory.types_ext
CategoryTheory.Presieve.IsSeparatedFor.ext
CategoryTheory.Presieve.IsSheafFor.isSeparatedFor
CategoryTheory.FunctorToTypes.naturality
CategoryTheory.congr_app

CategoryTheory.Subpresheaf

Definitions

NameCategoryTheorems
sheafify 📖CompOp
sheafifyLift 📖CompOp
toRangeSheafify 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
eq_sheafify 📖mathematicalCategoryTheory.Presieve.IsSheaf
CategoryTheory.Subfunctor.toFunctor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Subfunctor.sheafifyCategoryTheory.Subfunctor.eq_sheafify
eq_sheafify_iff 📖mathematicalCategoryTheory.Presieve.IsSheafCategoryTheory.Subfunctor.sheafify
CategoryTheory.Subfunctor.toFunctor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Subfunctor.eq_sheafify_iff
isSeparated 📖mathematicalCategoryTheory.Presieve.IsSeparatedCategoryTheory.Subfunctor.toFunctor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Subfunctor.isSeparated
isSheaf_iff 📖mathematicalCategoryTheory.Presieve.IsSheafCategoryTheory.Subfunctor.toFunctor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.obj
CategoryTheory.types
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
CategoryTheory.Subfunctor.isSheaf_iff
le_sheafify 📖mathematicalCategoryTheory.Subfunctor
Opposite
CategoryTheory.Category.opposite
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
CategoryTheory.Subfunctor.sheafify
CategoryTheory.Subfunctor.le_sheafify
sheafify_isSheaf 📖mathematicalCategoryTheory.Presieve.IsSheafCategoryTheory.Subfunctor.toFunctor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Subfunctor.sheafify
CategoryTheory.Subfunctor.sheafify_isSheaf
sheafify_le 📖mathematicalCategoryTheory.Subfunctor
Opposite
CategoryTheory.Category.opposite
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
CategoryTheory.Presieve.IsSheaf
CategoryTheory.Subfunctor.toFunctor
CategoryTheory.Subfunctor.sheafifyCategoryTheory.Subfunctor.sheafify_le
sheafify_sheafify 📖mathematicalCategoryTheory.Presieve.IsSheafCategoryTheory.Subfunctor.sheafifyCategoryTheory.Subfunctor.sheafify_sheafify
to_sheafifyLift 📖mathematicalCategoryTheory.Presieve.IsSheafCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Subfunctor.toFunctor
CategoryTheory.Subfunctor.sheafify
CategoryTheory.Subfunctor.homOfLe
CategoryTheory.Subfunctor.le_sheafify
CategoryTheory.Subfunctor.sheafifyLift
CategoryTheory.Subfunctor.to_sheafifyLift
to_sheafify_lift_unique 📖CategoryTheory.Presieve.IsSheaf
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Subfunctor.toFunctor
CategoryTheory.Subfunctor.sheafify
CategoryTheory.Subfunctor.homOfLe
CategoryTheory.Subfunctor.le_sheafify
CategoryTheory.Subfunctor.to_sheafify_lift_unique

---

← Back to Index