Documentation

Mathlib.CategoryTheory.Sites.Subsheaf

Subsheaf of types #

We define the subsheaf of a type-valued presheaf.

Main results #

Every subpresheaf of a separated presheaf is itself separated.

@[deprecated CategoryTheory.Subfunctor.isSeparated (since := "2025-12-11")]

Alias of CategoryTheory.Subfunctor.isSeparated.


Every subpresheaf of a separated presheaf is itself separated.

The sheafification of a subpresheaf as a subpresheaf. Note that this is a sheaf only when the whole presheaf is a sheaf.

Equations
    Instances For
      @[deprecated CategoryTheory.Subfunctor.sheafify (since := "2025-12-11")]

      Alias of CategoryTheory.Subfunctor.sheafify.


      The sheafification of a subpresheaf as a subpresheaf. Note that this is a sheaf only when the whole presheaf is a sheaf.

      Equations
        Instances For
          @[deprecated CategoryTheory.Subfunctor.le_sheafify (since := "2025-12-11")]

          Alias of CategoryTheory.Subfunctor.le_sheafify.

          @[deprecated CategoryTheory.Subfunctor.eq_sheafify (since := "2025-12-11")]

          Alias of CategoryTheory.Subfunctor.eq_sheafify.

          @[deprecated CategoryTheory.Subfunctor.sheafify_isSheaf (since := "2025-12-11")]

          Alias of CategoryTheory.Subfunctor.sheafify_isSheaf.

          @[deprecated CategoryTheory.Subfunctor.eq_sheafify_iff (since := "2025-12-11")]

          Alias of CategoryTheory.Subfunctor.eq_sheafify_iff.

          @[deprecated CategoryTheory.Subfunctor.isSheaf_iff (since := "2025-12-11")]

          Alias of CategoryTheory.Subfunctor.isSheaf_iff.

          @[deprecated CategoryTheory.Subfunctor.sheafify_sheafify (since := "2025-12-11")]

          Alias of CategoryTheory.Subfunctor.sheafify_sheafify.

          noncomputable def CategoryTheory.Subfunctor.sheafifyLift {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {F F' : Functor Cᵒᵖ (Type w)} (G : Subfunctor F) (f : G.toFunctor F') (h : Presieve.IsSheaf J F') :

          The lift of a presheaf morphism onto the sheafification subpresheaf.

          Equations
            Instances For
              @[deprecated CategoryTheory.Subfunctor.sheafifyLift (since := "2025-12-11")]

              Alias of CategoryTheory.Subfunctor.sheafifyLift.


              The lift of a presheaf morphism onto the sheafification subpresheaf.

              Equations
                Instances For
                  @[deprecated CategoryTheory.Subfunctor.to_sheafifyLift (since := "2025-12-11")]

                  Alias of CategoryTheory.Subfunctor.to_sheafifyLift.

                  @[deprecated CategoryTheory.Subfunctor.to_sheafify_lift_unique (since := "2025-12-11")]

                  Alias of CategoryTheory.Subfunctor.to_sheafify_lift_unique.

                  @[deprecated CategoryTheory.Subfunctor.sheafify_le (since := "2025-12-11")]

                  Alias of CategoryTheory.Subfunctor.sheafify_le.

                  A morphism factors through the sheafification of the image presheaf.

                  Equations
                    Instances For
                      @[simp]
                      theorem CategoryTheory.Subfunctor.toRangeSheafify_app_coe {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {F F' : Functor Cᵒᵖ (Type w)} (f : F' F) (X : Cᵒᵖ) (a✝ : F'.obj X) :
                      ((toRangeSheafify J f).app X a✝) = ((toRange f).app X a✝)
                      @[deprecated CategoryTheory.Subfunctor.toRangeSheafify (since := "2025-12-11")]

                      Alias of CategoryTheory.Subfunctor.toRangeSheafify.


                      A morphism factors through the sheafification of the image presheaf.

                      Equations
                        Instances For
                          def CategoryTheory.Sheaf.image {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {F F' : Sheaf J (Type w)} (f : F F') :

                          The image sheaf of a morphism between sheaves, defined to be the sheafification of image_presheaf.

                          Equations
                            Instances For
                              def CategoryTheory.Sheaf.toImage {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {F F' : Sheaf J (Type w)} (f : F F') :

                              A morphism factors through the image sheaf.

                              Equations
                                Instances For
                                  def CategoryTheory.Sheaf.imageι {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {F F' : Sheaf J (Type w)} (f : F F') :
                                  image f F'

                                  The inclusion of the image sheaf to the target.

                                  Equations
                                    Instances For

                                      The mono factorization given by image_sheaf for a morphism.

                                      Equations
                                        Instances For
                                          noncomputable def CategoryTheory.imageFactorization {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {F F' : Sheaf J (Type (max v u))} (f : F F') :

                                          The mono factorization given by image_sheaf for a morphism is an image.

                                          Equations
                                            Instances For