Documentation

Mathlib.CategoryTheory.Subfunctor.Image

The image of a subfunctor #

Given a morphism of type-valued functors p : F' ⟶ F, we define its range Subfunctor.range p. More generally, if G' : Subfunctor F', we define G'.image p : Subfunctor F as the image of G' by f, and if G : Subfunctor F, we define its preimage G.preimage f : Subfunctor F'.

def CategoryTheory.Subfunctor.range {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (p : F' F) :

The range of a morphism of type-valued functors, as a subfunctor of the target.

Equations
    Instances For
      @[simp]
      theorem CategoryTheory.Subfunctor.range_obj {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (p : F' F) (U : C) :
      (range p).obj U = Set.range (p.app U)
      def CategoryTheory.Subfunctor.lift {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (f : F' F) {G : Subfunctor F} (hf : range f G) :

      If the image of a morphism falls in a subfunctor, then the morphism factors through it.

      Equations
        Instances For
          @[simp]
          theorem CategoryTheory.Subfunctor.lift_app_coe {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (f : F' F) {G : Subfunctor F} (hf : range f G) (U : C) (x : F'.obj U) :
          ((lift f hf).app U x) = f.app U x
          @[simp]
          theorem CategoryTheory.Subfunctor.lift_ι {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (f : F' F) {G : Subfunctor F} (hf : range f G) :
          @[simp]
          theorem CategoryTheory.Subfunctor.lift_ι_assoc {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (f : F' F) {G : Subfunctor F} (hf : range f G) {Z : Functor C (Type w)} (h : F Z) :
          def CategoryTheory.Subfunctor.toRange {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (p : F' F) :

          Given a morphism p : F' ⟶ F of type-valued functors, this is the morphism from F' to its range.

          Equations
            Instances For
              theorem CategoryTheory.Subfunctor.toRange_app_val {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (p : F' F) {i : C} (x : F'.obj i) :
              ((toRange p).app i x) = p.app i x
              def CategoryTheory.Subfunctor.image {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (G : Subfunctor F) (f : F F') :

              The image of a subfunctor by a morphism of type-valued functors.

              Equations
                Instances For
                  @[simp]
                  theorem CategoryTheory.Subfunctor.image_obj {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (G : Subfunctor F) (f : F F') (i : C) :
                  (G.image f).obj i = f.app i '' G.obj i
                  @[simp]
                  theorem CategoryTheory.Subfunctor.image_iSup {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} {ι : Type u_1} (G : ιSubfunctor F) (f : F F') :
                  (⨆ (i : ι), G i).image f = ⨆ (i : ι), (G i).image f
                  theorem CategoryTheory.Subfunctor.image_comp {C : Type u} [Category.{v, u} C] {F F' F'' : Functor C (Type w)} (G : Subfunctor F) (f : F F') (g : F' F'') :
                  theorem CategoryTheory.Subfunctor.range_comp {C : Type u} [Category.{v, u} C] {F F' F'' : Functor C (Type w)} (f : F F') (g : F' F'') :
                  def CategoryTheory.Subfunctor.preimage {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (G : Subfunctor F) (p : F' F) :

                  The preimage of a subfunctor by a morphism of type-valued functors.

                  Equations
                    Instances For
                      @[simp]
                      theorem CategoryTheory.Subfunctor.preimage_obj {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (G : Subfunctor F) (p : F' F) (n : C) :
                      (G.preimage p).obj n = p.app n ⁻¹' G.obj n
                      theorem CategoryTheory.Subfunctor.preimage_comp {C : Type u} [Category.{v, u} C] {F F' F'' : Functor C (Type w)} (G : Subfunctor F) (f : F'' F') (g : F' F) :
                      theorem CategoryTheory.Subfunctor.image_le_iff {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (G : Subfunctor F) (f : F F') (G' : Subfunctor F') :
                      G.image f G' G G'.preimage f

                      Given a morphism p : F' ⟶ F of type-valued functors and G : Subfunctor F, this is the morphism from the preimage of G by p to G.

                      Equations
                        Instances For
                          @[simp]
                          theorem CategoryTheory.Subfunctor.preimage_image_of_epi {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (G : Subfunctor F) (p : F' F) [hp : Epi p] :
                          (G.preimage p).image p = G
                          @[deprecated CategoryTheory.Subfunctor.range (since := "2025-12-11")]

                          Alias of CategoryTheory.Subfunctor.range.


                          The range of a morphism of type-valued functors, as a subfunctor of the target.

                          Equations
                            Instances For
                              @[deprecated CategoryTheory.Subfunctor.range_id (since := "2025-12-11")]

                              Alias of CategoryTheory.Subfunctor.range_id.

                              @[deprecated CategoryTheory.Subfunctor.range_ι (since := "2025-12-11")]

                              Alias of CategoryTheory.Subfunctor.range_ι.

                              @[deprecated CategoryTheory.Subfunctor.lift (since := "2025-12-11")]

                              Alias of CategoryTheory.Subfunctor.lift.


                              If the image of a morphism falls in a subfunctor, then the morphism factors through it.

                              Equations
                                Instances For
                                  @[deprecated CategoryTheory.Subfunctor.lift_ι (since := "2025-12-11")]

                                  Alias of CategoryTheory.Subfunctor.lift_ι.

                                  @[deprecated CategoryTheory.Subfunctor.toRange (since := "2025-12-11")]

                                  Alias of CategoryTheory.Subfunctor.toRange.


                                  Given a morphism p : F' ⟶ F of type-valued functors, this is the morphism from F' to its range.

                                  Equations
                                    Instances For
                                      @[deprecated CategoryTheory.Subfunctor.toRange_ι (since := "2025-12-11")]

                                      Alias of CategoryTheory.Subfunctor.toRange_ι.

                                      @[deprecated CategoryTheory.Subfunctor.toRange_app_val (since := "2025-12-11")]
                                      theorem CategoryTheory.Subfunctor.Subpresheaf.toRange_app_val {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (p : F' F) {i : C} (x : F'.obj i) :
                                      ((Subfunctor.toRange p).app i x) = p.app i x

                                      Alias of CategoryTheory.Subfunctor.toRange_app_val.

                                      @[deprecated CategoryTheory.Subfunctor.range_toRange (since := "2025-12-11")]

                                      Alias of CategoryTheory.Subfunctor.range_toRange.

                                      @[deprecated CategoryTheory.Subfunctor.epi_iff_range_eq_top (since := "2025-12-11")]

                                      Alias of CategoryTheory.Subfunctor.epi_iff_range_eq_top.

                                      @[deprecated CategoryTheory.Subfunctor.range_eq_top (since := "2025-12-11")]

                                      Alias of CategoryTheory.Subfunctor.range_eq_top.

                                      @[deprecated CategoryTheory.Subfunctor.range_comp_le (since := "2025-12-11")]

                                      Alias of CategoryTheory.Subfunctor.range_comp_le.

                                      @[deprecated CategoryTheory.Subfunctor.image (since := "2025-12-11")]

                                      Alias of CategoryTheory.Subfunctor.image.


                                      The image of a subfunctor by a morphism of type-valued functors.

                                      Equations
                                        Instances For
                                          @[deprecated CategoryTheory.Subfunctor.image_top (since := "2025-12-11")]

                                          Alias of CategoryTheory.Subfunctor.image_top.

                                          @[deprecated CategoryTheory.Subfunctor.image_iSup (since := "2025-12-11")]
                                          theorem CategoryTheory.Subfunctor.Subpresheaf.image_iSup {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} {ι : Type u_1} (G : ιSubfunctor F) (f : F F') :
                                          (⨆ (i : ι), G i).image f = ⨆ (i : ι), (G i).image f

                                          Alias of CategoryTheory.Subfunctor.image_iSup.

                                          @[deprecated CategoryTheory.Subfunctor.image_comp (since := "2025-12-11")]
                                          theorem CategoryTheory.Subfunctor.Subpresheaf.image_comp {C : Type u} [Category.{v, u} C] {F F' F'' : Functor C (Type w)} (G : Subfunctor F) (f : F F') (g : F' F'') :

                                          Alias of CategoryTheory.Subfunctor.image_comp.

                                          @[deprecated CategoryTheory.Subfunctor.range_comp (since := "2025-12-11")]

                                          Alias of CategoryTheory.Subfunctor.range_comp.

                                          @[deprecated CategoryTheory.Subfunctor.preimage (since := "2025-12-11")]

                                          Alias of CategoryTheory.Subfunctor.preimage.


                                          The preimage of a subfunctor by a morphism of type-valued functors.

                                          Equations
                                            Instances For
                                              @[deprecated CategoryTheory.Subfunctor.preimage_id (since := "2025-12-11")]

                                              Alias of CategoryTheory.Subfunctor.preimage_id.

                                              @[deprecated CategoryTheory.Subfunctor.preimage_comp (since := "2025-12-11")]
                                              theorem CategoryTheory.Subfunctor.Subpresheaf.preimage_comp {C : Type u} [Category.{v, u} C] {F F' F'' : Functor C (Type w)} (G : Subfunctor F) (f : F'' F') (g : F' F) :

                                              Alias of CategoryTheory.Subfunctor.preimage_comp.

                                              @[deprecated CategoryTheory.Subfunctor.image_le_iff (since := "2025-12-11")]
                                              theorem CategoryTheory.Subfunctor.Subpresheaf.image_le_iff {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (G : Subfunctor F) (f : F F') (G' : Subfunctor F') :
                                              G.image f G' G G'.preimage f

                                              Alias of CategoryTheory.Subfunctor.image_le_iff.

                                              @[deprecated CategoryTheory.Subfunctor.fromPreimage (since := "2025-12-11")]

                                              Alias of CategoryTheory.Subfunctor.fromPreimage.


                                              Given a morphism p : F' ⟶ F of type-valued functors and G : Subfunctor F, this is the morphism from the preimage of G by p to G.

                                              Equations
                                                Instances For
                                                  @[deprecated CategoryTheory.Subfunctor.fromPreimage_ι (since := "2025-12-11")]

                                                  Alias of CategoryTheory.Subfunctor.fromPreimage_ι.

                                                  @[deprecated CategoryTheory.Subfunctor.preimage_eq_top_iff (since := "2025-12-11")]

                                                  Alias of CategoryTheory.Subfunctor.preimage_eq_top_iff.

                                                  @[deprecated CategoryTheory.Subfunctor.preimage_image_of_epi (since := "2025-12-11")]
                                                  theorem CategoryTheory.Subfunctor.Subpresheaf.preimage_image_of_epi {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (G : Subfunctor F) (p : F' F) [hp : Epi p] :
                                                  (G.preimage p).image p = G

                                                  Alias of CategoryTheory.Subfunctor.preimage_image_of_epi.