Documentation Verification Report

SmallRepresentatives

📁 Source: Mathlib/CategoryTheory/SmallRepresentatives.lean

Statistics

MetricCount
DefinitionsCoreSmallCategoryOfSet, arrowEquiv, equivalence, fullyFaithfulFunctor, functor, hom, homEquiv, obj, objEquiv, smallCategoryOfSet, SmallCategoryCardinalLT, categoryFamily, SmallCategoryOfSet, categoryFamily, comp, hom, id, instSmallCategoryElemObj, obj
19
Theoremsfunctor_map, functor_obj, instIsEquivalenceElemObjSmallCategoryOfSetFunctor, smallCategoryOfSet_comp, smallCategoryOfSet_hom, smallCategoryOfSet_id, smallCategoryOfSet_obj, exists_equivalence, hasCardinalLT, assoc, comp_def, comp_id, exists_equivalence, id_comp, id_def
15
Total34

CategoryTheory

Definitions

NameCategoryTheorems
CoreSmallCategoryOfSet 📖CompData
SmallCategoryCardinalLT 📖CompOp
SmallCategoryOfSet 📖CompData
3 mathmath: ObjectProperty.instIsClosedUnderColimitsOfShapeColimitsCardinalClosureCategoryFamily, SmallCategoryCardinalLT.hasCardinalLT, SmallCategoryCardinalLT.exists_equivalence

CategoryTheory.CoreSmallCategoryOfSet

Definitions

NameCategoryTheorems
arrowEquiv 📖CompOp
equivalence 📖CompOp
fullyFaithfulFunctor 📖CompOp
functor 📖CompOp
3 mathmath: functor_obj, instIsEquivalenceElemObjSmallCategoryOfSetFunctor, functor_map
hom 📖CompOp
4 mathmath: smallCategoryOfSet_id, smallCategoryOfSet_hom, functor_map, smallCategoryOfSet_comp
homEquiv 📖CompOp
3 mathmath: smallCategoryOfSet_id, functor_map, smallCategoryOfSet_comp
obj 📖CompOp
5 mathmath: functor_obj, smallCategoryOfSet_id, functor_map, smallCategoryOfSet_comp, smallCategoryOfSet_obj
objEquiv 📖CompOp
4 mathmath: functor_obj, smallCategoryOfSet_id, functor_map, smallCategoryOfSet_comp
smallCategoryOfSet 📖CompOp
7 mathmath: functor_obj, instIsEquivalenceElemObjSmallCategoryOfSetFunctor, smallCategoryOfSet_id, smallCategoryOfSet_hom, functor_map, smallCategoryOfSet_comp, smallCategoryOfSet_obj

Theorems

NameKindAssumesProvesValidatesDepends On
functor_map 📖mathematicalCategoryTheory.Functor.map
Set.Elem
CategoryTheory.SmallCategoryOfSet.obj
smallCategoryOfSet
CategoryTheory.SmallCategoryOfSet.instSmallCategoryElemObj
functor
DFunLike.coe
Equiv
hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
obj
EquivLike.toFunLike
Equiv.instEquivLike
objEquiv
homEquiv
functor_obj 📖mathematicalCategoryTheory.Functor.obj
Set.Elem
CategoryTheory.SmallCategoryOfSet.obj
smallCategoryOfSet
CategoryTheory.SmallCategoryOfSet.instSmallCategoryElemObj
functor
DFunLike.coe
Equiv
obj
EquivLike.toFunLike
Equiv.instEquivLike
objEquiv
instIsEquivalenceElemObjSmallCategoryOfSetFunctor 📖mathematicalCategoryTheory.Functor.IsEquivalence
Set.Elem
CategoryTheory.SmallCategoryOfSet.obj
smallCategoryOfSet
CategoryTheory.SmallCategoryOfSet.instSmallCategoryElemObj
functor
CategoryTheory.Functor.FullyFaithful.faithful
CategoryTheory.Functor.FullyFaithful.full
Equiv.surjective
smallCategoryOfSet_comp 📖mathematicalCategoryTheory.SmallCategoryOfSet.comp
smallCategoryOfSet
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Set.Elem
obj
EquivLike.toFunLike
Equiv.instEquivLike
objEquiv
hom
Equiv.symm
homEquiv
CategoryTheory.CategoryStruct.comp
smallCategoryOfSet_hom 📖mathematicalCategoryTheory.SmallCategoryOfSet.hom
smallCategoryOfSet
hom
smallCategoryOfSet_id 📖mathematicalCategoryTheory.SmallCategoryOfSet.id
smallCategoryOfSet
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Set.Elem
obj
EquivLike.toFunLike
Equiv.instEquivLike
objEquiv
hom
Equiv.symm
homEquiv
CategoryTheory.CategoryStruct.id
smallCategoryOfSet_obj 📖mathematicalCategoryTheory.SmallCategoryOfSet.obj
smallCategoryOfSet
obj

CategoryTheory.SmallCategoryCardinalLT

Definitions

NameCategoryTheorems
categoryFamily 📖CompOp
3 mathmath: CategoryTheory.ObjectProperty.instIsClosedUnderColimitsOfShapeColimitsCardinalClosureCategoryFamily, hasCardinalLT, exists_equivalence

Theorems

NameKindAssumesProvesValidatesDepends On
exists_equivalence 📖mathematicalHasCardinalLT
CategoryTheory.Arrow
CategoryTheory.Equivalence
categoryFamily
CategoryTheory.SmallCategoryOfSet.instSmallCategoryElemObj
Ordinal.ToType
Cardinal.ord
CategoryTheory.SmallCategoryOfSet
Set.Elem
CategoryTheory.SmallCategoryOfSet.obj
Cardinal.lift_mk_le'
Cardinal.mk_toType
Cardinal.card_ord
LT.lt.le
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
Function.Embedding.injective
hasCardinalLT_iff_of_equiv
hasCardinalLT 📖mathematicalHasCardinalLT
CategoryTheory.Arrow
categoryFamily
CategoryTheory.SmallCategoryOfSet.instSmallCategoryElemObj
Ordinal.ToType
Cardinal.ord
CategoryTheory.SmallCategoryOfSet
Set.Elem
CategoryTheory.SmallCategoryOfSet.obj

CategoryTheory.SmallCategoryOfSet

Definitions

NameCategoryTheorems
categoryFamily 📖CompOp
1 mathmath: exists_equivalence
comp 📖CompOp
5 mathmath: assoc, id_comp, comp_def, comp_id, CategoryTheory.CoreSmallCategoryOfSet.smallCategoryOfSet_comp
hom 📖CompOp
1 mathmath: CategoryTheory.CoreSmallCategoryOfSet.smallCategoryOfSet_hom
id 📖CompOp
4 mathmath: id_def, CategoryTheory.CoreSmallCategoryOfSet.smallCategoryOfSet_id, id_comp, comp_id
instSmallCategoryElemObj 📖CompOp
9 mathmath: CategoryTheory.CoreSmallCategoryOfSet.functor_obj, CategoryTheory.CoreSmallCategoryOfSet.instIsEquivalenceElemObjSmallCategoryOfSetFunctor, id_def, CategoryTheory.ObjectProperty.instIsClosedUnderColimitsOfShapeColimitsCardinalClosureCategoryFamily, CategoryTheory.SmallCategoryCardinalLT.hasCardinalLT, comp_def, CategoryTheory.CoreSmallCategoryOfSet.functor_map, CategoryTheory.SmallCategoryCardinalLT.exists_equivalence, exists_equivalence
obj 📖CompOp
9 mathmath: CategoryTheory.CoreSmallCategoryOfSet.functor_obj, CategoryTheory.CoreSmallCategoryOfSet.instIsEquivalenceElemObjSmallCategoryOfSetFunctor, id_def, CategoryTheory.ObjectProperty.instIsClosedUnderColimitsOfShapeColimitsCardinalClosureCategoryFamily, CategoryTheory.SmallCategoryCardinalLT.hasCardinalLT, comp_def, CategoryTheory.CoreSmallCategoryOfSet.functor_map, CategoryTheory.SmallCategoryCardinalLT.exists_equivalence, CategoryTheory.CoreSmallCategoryOfSet.smallCategoryOfSet_obj

Theorems

NameKindAssumesProvesValidatesDepends On
assoc 📖mathematicalcomp
comp_def 📖mathematicalCategoryTheory.CategoryStruct.comp
Set.Elem
obj
CategoryTheory.Category.toCategoryStruct
instSmallCategoryElemObj
comp
comp_id 📖mathematicalcomp
id
exists_equivalence 📖mathematicalCardinal
Cardinal.instLE
Cardinal.lift
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Equivalence
categoryFamily
instSmallCategoryElemObj
Cardinal.lift_mk_le'
Function.Embedding.injective
id_comp 📖mathematicalcomp
id
id_def 📖mathematicalCategoryTheory.CategoryStruct.id
Set.Elem
obj
CategoryTheory.Category.toCategoryStruct
instSmallCategoryElemObj
id

---

← Back to Index