Documentation

Mathlib.CategoryTheory.SmallRepresentatives

Representatives of small categories #

Given a type Ω : Type w, we construct a structure SmallCategoryOfSet Ω : Type w which consists of the data and axioms that allows to define a category structure such that the type of objects and morphisms identify to subtypes of Ω.

This allows to define a small family of small categories SmallCategoryOfSet.categoryFamily : SmallCategoryOfSet Ω → Type w which, up to equivalence, represents all categories such that types of objects and morphisms have cardinalities less than or equal to that of Ω (see SmallCategoryOfSet.exists_equivalence).

Given a cardinal κ : Cardinal.{w}, we also provide a small family of categories SmallCategoryCardinalLT.categoryFamily κ which represents (up to isomorphism) any category C such that HasCardinalLT C κ holds.

Structure which allows to construct a category whose types of objects and morphisms are subtypes of a fixed type Ω.

  • obj : Set Ω

    objects

  • hom (X Y : self.obj) : Set Ω

    morphisms

  • id (X : self.obj) : (self.hom X X)

    identity morphisms

  • comp {X Y Z : self.obj} (f : (self.hom X Y)) (g : (self.hom Y Z)) : (self.hom X Z)

    the composition of morphisms

  • id_comp {X Y : self.obj} (f : (self.hom X Y)) : self.comp (self.id X) f = f
  • comp_id {X Y : self.obj} (f : (self.hom X Y)) : self.comp f (self.id Y) = f
  • assoc {X Y Z T : self.obj} (f : (self.hom X Y)) (g : (self.hom Y Z)) (h : (self.hom Z T)) : self.comp (self.comp f g) h = self.comp f (self.comp g h)
Instances For
    @[simp]
    theorem CategoryTheory.SmallCategoryOfSet.comp_def (Ω : Type w) (S : SmallCategoryOfSet Ω) {X✝ Y✝ Z✝ : S.obj} (f : (S.hom X✝ Y✝)) (g : (S.hom Y✝ Z✝)) :
    @[reducible, inline]

    The family of all categories such that the types of objects and morphisms are subtypes of a given type Ω.

    Equations
      Instances For
        structure CategoryTheory.CoreSmallCategoryOfSet (Ω : Type w) (C : Type u) [Category.{v, u} C] :
        Type (max (max u v) w)

        Helper structure for the construction of a term in SmallCategoryOfSet. This involves the choice of bijections between types of objects and morphisms in a category C and subtypes of a type Ω.

        • obj : Set Ω

          objects

        • hom (X Y : self.obj) : Set Ω

          morphisms

        • objEquiv : self.obj C

          a bijection between the types of objects

        • homEquiv {X Y : self.obj} : (self.hom X Y) (self.objEquiv X self.objEquiv Y)

          a bijection between the types of morphisms

        Instances For
          @[simp]
          theorem CategoryTheory.CoreSmallCategoryOfSet.smallCategoryOfSet_comp {Ω : Type w} {C : Type u} [Category.{v, u} C] (h : CoreSmallCategoryOfSet Ω C) {X✝ Y✝ Z✝ : h.obj} (f : (h.hom X✝ Y✝)) (g : (h.hom Y✝ Z✝)) :

          Given h : CoreSmallCategoryOfSet Ω C, this is the obvious functor h.smallCategoryOfSet.obj ⥤ C.

          Equations
            Instances For
              @[simp]
              theorem CategoryTheory.CoreSmallCategoryOfSet.functor_map {Ω : Type w} {C : Type u} [Category.{v, u} C] (h : CoreSmallCategoryOfSet Ω C) {X✝ Y✝ : h.smallCategoryOfSet.obj} (a : (h.hom X✝ Y✝)) :

              Given h : CoreSmallCategoryOfSet Ω C, the obvious functor h.smallCategoryOfSet.obj ⥤ C is fully faithful.

              Equations
                Instances For

                  Given h : CoreSmallCategoryOfSet Ω C, the obvious functor h.smallCategoryOfSet.obj ⥤ C is an equivalence.

                  Equations
                    Instances For

                      Given h : CoreSmallCategoryOfSet Ω C, the equivalence of categories h.smallCategoryOfSet.obj ≌ C is actually an isomorphism: it induces a bijection on the type of arrows.

                      Equations
                        Instances For

                          Index set of a representative set of all categories C which satisfy HasCardinalLT C κ, see SmallCategoryCardinalLT.categoryFamily.

                          Equations
                            Instances For
                              @[reducible, inline]

                              Given a cardinal κ, this is a representative family of all categories C such that HasCardinalLT C κ.

                              Equations
                                Instances For