Documentation Verification Report

MonoOver

πŸ“ Source: Mathlib/CategoryTheory/Subobject/MonoOver.lean

Statistics

MetricCount
DefinitionsMonoOver, arrow, coconeOfHasStrongEpiMonoFactorisation, exists, existsIsoMap, existsPullbackAdj, forget, forgetImage, fullyFaithfulForget, homMk, image, imageForgetAdj, imageMonoOver, instCoeOut, isColimitCoconeOfHasStrongEpiMonoFactorisation, isoMk, liftComp, liftId, liftIso, liftStructOfHasStrongEpiMonoFactorisation, map, mapComp, mapId, mapIso, mapPullbackAdj, mk, mk', mk'ArrowIso, mkArrowIso, pullback, pullbackComp, pullbackId, pullbackMapSelf, pullbackObjIsoOfIsPullback, reflective, slice, strongEpiMonoFactorisationSigmaDesc, isMono
38
TheoremscommSqOfHasStrongEpiMonoFactorisation, congr_counitIso, congr_functor, congr_inverse, congr_unitIso, faithful_exists, faithful_map, forget_obj_hom, forget_obj_left, full_map, hasColimitsOfSize_of_hasStrongEpiMonoFactorisations, hasFiniteLimits, hasLimit, hasLimitsOfShape, hasLimitsOfSize, imageMonoOver_arrow, image_map, image_obj, instIsClosedUnderLimitsOfShapeOverIsMono, instIsIsoLeftDiscretePUnitHomFullSubcategoryOverIsMono, instIsRightAdjointOverForget, instMonoHomDiscretePUnitObjOverForget, isIso_iff_isIso_hom_left, isIso_iff_isIso_left, isThin, isoMk_hom, isoMk_inv, lift_comm, lift_map_hom, lift_obj_arrow, lift_obj_obj, mapIso_counitIso, mapIso_functor, mapIso_inverse, mapIso_unitIso, map_obj_arrow, map_obj_left, mk'_arrow, mk'_coe', mkArrowIso_hom_hom_left, mkArrowIso_inv_hom_left, mk_arrow, mk_coe, mk_obj, mono, mono_obj_hom, pullback_obj_arrow, pullback_obj_left, w, w_assoc
50
Total88

CategoryTheory

Definitions

NameCategoryTheorems
MonoOver πŸ“–CompOp
90 mathmath: Subobject.factors_iff, MonoOver.congr_unitIso, IsGrothendieckAbelian.IsPresentable.injectivityβ‚€.F_obj, MonoOver.mapIso_functor, MonoOver.hasColimitsOfSize_of_hasStrongEpiMonoFactorisations, MonoOver.instIsRightAdjointOverForget, MonoOver.isIso_iff_subobjectMk_eq, Classifier.SubobjectRepresentableBy.iso_inv_hom_left_comp, MonoOver.isoMk_inv, MonoOver.mapIso_unitIso, IsGrothendieckAbelian.IsPresentable.surjectivity.F_map, MonoOver.mapIso_counitIso, Types.monoOverEquivalenceSet_inverse_map, MonoOver.mkArrowIso_hom_hom_left, MonoOver.map_obj_left, essentiallySmall_monoOver, MonoOver.pullback_obj_arrow, Subfunctor.equivalenceMonoOver_inverse_map, MonoOver.image_map, Subfunctor.equivalenceMonoOver_functor_map, Subobject.inf_eq_map_pullback', monoOver_terminal_to_subterminals_comp, MonoOver.image_obj, Subfunctor.equivalenceMonoOver_inverse_obj, MonoOver.bot_left, MonoOver.bot_arrow, MonoOver.map_obj_arrow, subterminalsEquivMonoOverTerminal_inverse_map, Subobject.lower_comm, MonoOver.bot_arrow_eq_zero, MonoOver.hasFiniteLimits, Subfunctor.equivalenceMonoOver_functor_obj, IsGrothendieckAbelian.IsPresentable.injectivityβ‚€.F_map, isEventuallyConstant_of_isArtinianObject, MonoOver.forget_obj_left, Subobject.instIsEquivalenceMonoOverRepresentative, Types.monoOverEquivalenceSet_functor_map, subterminalsEquivMonoOverTerminal_inverse_obj_obj, Types.monoOverEquivalenceSet_functor_obj, MonoOver.hasLimitsOfShape, MonoOver.congr_functor, MonoOver.isIso_iff_isIso_hom_left, MonoOver.congr_inverse, MonoOver.isoMk_hom, Classifier.SubobjectRepresentableBy.iso_inv_left_Ο€_assoc, Subobject.lowerEquivalence_counitIso, subterminalsEquivMonoOverTerminal_functor_map, MonoOver.top_arrow, IsGrothendieckAbelian.generatingMonomorphisms.functorToMonoOver_map, MonoOver.inf_map_app, MonoOver.isThin, MonoOver.mkArrowIso_inv_hom_left, Classifier.SubobjectRepresentableBy.iso_inv_hom_left_comp_assoc, MonoOver.pullback_obj_left, Subobject.lowerEquivalence_unitIso, Subfunctor.equivalenceMonoOver_unitIso, subterminalsEquivMonoOverTerminal_unitIso, MonoOver.forget_obj_hom, Classifier.SubobjectRepresentableBy.iso_inv_left_comp, MonoOver.commSqOfHasStrongEpiMonoFactorisation, subterminalsEquivMonoOverTerminal_counitIso, Classifier.SubobjectRepresentableBy.iso_inv_left_Ο€, Types.monoOverEquivalenceSet_inverse_obj, MonoOver.hasLimit, MonoOver.instMonoHomDiscretePUnitObjOverForget, IsGrothendieckAbelian.IsPresentable.surjectivity.F_obj, MonoOver.inf_obj, MonoOver.top_left, Types.monoOverEquivalenceSet_unitIso, IsGrothendieckAbelian.generatingMonomorphisms.functorToMonoOver_obj, Subobject.representative_coe, MonoOver.full_map, Subobject.inf_eq_map_pullback, MonoOver.mapIso_inverse, MonoOver.congr_counitIso, Subobject.lowerEquivalence_inverse, Subobject.lowerEquivalence_functor, isEventuallyConstant_of_isNoetherianObject, MonoOver.faithful_exists, isNoetherianObject_iff_isEventuallyConstant, Types.monoOverEquivalenceSet_counitIso, subterminalsEquivMonoOverTerminal_functor_obj_obj, isArtinianObject_iff_isEventuallyConstant, MonoOver.faithful_map, MonoOver.hasLimitsOfSize, subterminals_to_monoOver_terminal_comp_forget, Subobject.representative_arrow, Subfunctor.equivalenceMonoOver_counitIso, MonoOver.isIso_iff_isIso_left, essentiallySmall_monoOver_iff_small_subobject

CategoryTheory.MonoOver

Definitions

NameCategoryTheorems
arrow πŸ“–CompOp
26 mathmath: mk_arrow, mkArrowIso_hom_hom_left, pullback_obj_arrow, CategoryTheory.Subfunctor.equivalenceMonoOver_inverse_map, CategoryTheory.Subobject.inf_eq_map_pullback', lift_obj_arrow, CategoryTheory.Subfunctor.equivalenceMonoOver_inverse_obj, bot_arrow, map_obj_arrow, w, bot_arrow_eq_zero, imageMonoOver_arrow, mono, top_arrow, inf_map_app, mkArrowIso_inv_hom_left, mk'_arrow, w_assoc, pullback_obj_left, CategoryTheory.Subfunctor.equivalenceMonoOver_unitIso, forget_obj_hom, commSqOfHasStrongEpiMonoFactorisation, inf_obj, CategoryTheory.Subobject.inf_eq_map_pullback, CategoryTheory.Subobject.representative_arrow, CategoryTheory.Subfunctor.equivalenceMonoOver_counitIso
coconeOfHasStrongEpiMonoFactorisation πŸ“–CompOpβ€”
exists πŸ“–CompOp
1 mathmath: faithful_exists
existsIsoMap πŸ“–CompOpβ€”
existsPullbackAdj πŸ“–CompOpβ€”
forget πŸ“–CompOp
9 mathmath: instIsRightAdjointOverForget, pullback_obj_arrow, image_map, CategoryTheory.monoOver_terminal_to_subterminals_comp, forget_obj_left, inf_map_app, forget_obj_hom, instMonoHomDiscretePUnitObjOverForget, CategoryTheory.subterminals_to_monoOver_terminal_comp_forget
forgetImage πŸ“–CompOpβ€”
fullyFaithfulForget πŸ“–CompOpβ€”
homMk πŸ“–CompOp
15 mathmath: isoMk_inv, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.F_map, Types.monoOverEquivalenceSet_inverse_map, CategoryTheory.Subfunctor.equivalenceMonoOver_functor_map, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivityβ‚€.F_map, isoMk_hom, CategoryTheory.subterminalsEquivMonoOverTerminal_functor_map, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.functorToMonoOver_map, inf_map_app, CategoryTheory.Subfunctor.equivalenceMonoOver_unitIso, CategoryTheory.subterminalsEquivMonoOverTerminal_unitIso, CategoryTheory.subterminalsEquivMonoOverTerminal_counitIso, Types.monoOverEquivalenceSet_unitIso, Types.monoOverEquivalenceSet_counitIso, CategoryTheory.Subfunctor.equivalenceMonoOver_counitIso
image πŸ“–CompOp
2 mathmath: image_map, image_obj
imageForgetAdj πŸ“–CompOpβ€”
imageMonoOver πŸ“–CompOp
3 mathmath: image_map, image_obj, imageMonoOver_arrow
instCoeOut πŸ“–CompOpβ€”
isColimitCoconeOfHasStrongEpiMonoFactorisation πŸ“–CompOpβ€”
isoMk πŸ“–CompOp
7 mathmath: congr_unitIso, isoMk_inv, isoMk_hom, CategoryTheory.subterminalsEquivMonoOverTerminal_counitIso, Types.monoOverEquivalenceSet_unitIso, congr_counitIso, CategoryTheory.Subfunctor.equivalenceMonoOver_counitIso
liftComp πŸ“–CompOpβ€”
liftId πŸ“–CompOpβ€”
liftIso πŸ“–CompOpβ€”
liftStructOfHasStrongEpiMonoFactorisation πŸ“–CompOpβ€”
map πŸ“–CompOp
10 mathmath: mapIso_functor, mapIso_unitIso, mapIso_counitIso, map_obj_left, map_obj_arrow, inf_map_app, inf_obj, full_map, mapIso_inverse, faithful_map
mapComp πŸ“–CompOp
2 mathmath: mapIso_unitIso, mapIso_counitIso
mapId πŸ“–CompOp
2 mathmath: mapIso_unitIso, mapIso_counitIso
mapIso πŸ“–CompOp
7 mathmath: congr_unitIso, mapIso_functor, mapIso_unitIso, mapIso_counitIso, congr_inverse, mapIso_inverse, congr_counitIso
mapPullbackAdj πŸ“–CompOpβ€”
mk πŸ“–CompOpβ€”
mk' πŸ“–CompOpβ€”
mk'ArrowIso πŸ“–CompOpβ€”
mkArrowIso πŸ“–CompOp
2 mathmath: mkArrowIso_hom_hom_left, mkArrowIso_inv_hom_left
pullback πŸ“–CompOp
4 mathmath: pullback_obj_arrow, inf_map_app, pullback_obj_left, inf_obj
pullbackComp πŸ“–CompOpβ€”
pullbackId πŸ“–CompOpβ€”
pullbackMapSelf πŸ“–CompOpβ€”
pullbackObjIsoOfIsPullback πŸ“–CompOpβ€”
reflective πŸ“–CompOpβ€”
slice πŸ“–CompOpβ€”
strongEpiMonoFactorisationSigmaDesc πŸ“–CompOp
1 mathmath: commSqOfHasStrongEpiMonoFactorisation

Theorems

NameKindAssumesProvesValidatesDepends On
commSqOfHasStrongEpiMonoFactorisation πŸ“–mathematicalCategoryTheory.Limits.HasCoproductsCategoryTheory.CommSq
CategoryTheory.Limits.sigmaObj
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.Functor.obj
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete.functor
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.MonoFactorisation.I
CategoryTheory.Limits.Sigma.desc
arrow
CategoryTheory.Limits.StrongEpiMonoFactorisation.toMonoFactorisation
strongEpiMonoFactorisationSigmaDesc
CategoryTheory.CommaMorphism.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ΞΉ
CategoryTheory.Limits.MonoFactorisation.e
CategoryTheory.Limits.MonoFactorisation.m
β€”CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.MonoFactorisation.fac
CategoryTheory.Limits.Sigma.hom_ext
CategoryTheory.Limits.colimit.ΞΉ_desc_assoc
CategoryTheory.Over.w
CategoryTheory.Limits.colimit.ΞΉ_desc
congr_counitIso πŸ“–mathematicalβ€”CategoryTheory.Equivalence.counitIso
CategoryTheory.MonoOver
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
congr
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
lift
CategoryTheory.Over.post
CategoryTheory.Functor.id
mapIso
CategoryTheory.Iso.app
CategoryTheory.Iso.symm
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
isoMk
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
β€”β€”
congr_functor πŸ“–mathematicalβ€”CategoryTheory.Equivalence.functor
CategoryTheory.MonoOver
CategoryTheory.Functor.obj
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
congr
lift
CategoryTheory.Over.post
β€”β€”
congr_inverse πŸ“–mathematicalβ€”CategoryTheory.Equivalence.inverse
CategoryTheory.MonoOver
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
congr
CategoryTheory.Functor.comp
lift
CategoryTheory.Over.post
CategoryTheory.Functor.id
mapIso
CategoryTheory.Iso.app
CategoryTheory.Iso.symm
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
β€”β€”
congr_unitIso πŸ“–mathematicalβ€”CategoryTheory.Equivalence.unitIso
CategoryTheory.MonoOver
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
congr
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
lift
CategoryTheory.Over.post
CategoryTheory.Equivalence.inverse
mapIso
CategoryTheory.Iso.app
CategoryTheory.Iso.symm
CategoryTheory.Functor
CategoryTheory.Functor.category
isoMk
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
β€”β€”
faithful_exists πŸ“–mathematicalβ€”CategoryTheory.Functor.Faithful
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
exists
β€”isThin
faithful_map πŸ“–mathematicalβ€”CategoryTheory.Functor.Faithful
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
map
β€”isThin
forget_obj_hom πŸ“–mathematicalβ€”CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
forget
arrow
β€”β€”
forget_obj_left πŸ“–mathematicalβ€”CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
forget
CategoryTheory.ObjectProperty.FullSubcategory.obj
β€”β€”
full_map πŸ“–mathematicalβ€”CategoryTheory.Functor.Full
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
map
β€”CategoryTheory.cancel_mono
CategoryTheory.Category.assoc
w
hasColimitsOfSize_of_hasStrongEpiMonoFactorisations πŸ“–mathematicalCategoryTheory.Limits.HasCoproductsCategoryTheory.Limits.HasColimitsOfSize
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
β€”β€”
hasFiniteLimits πŸ“–mathematicalβ€”CategoryTheory.Limits.HasFiniteLimits
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
β€”hasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_of_hasFiniteLimits
hasLimit πŸ“–mathematicalβ€”CategoryTheory.Limits.HasLimit
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
β€”CategoryTheory.Limits.hasLimit_of_closedUnderLimits
instIsClosedUnderLimitsOfShapeOverIsMono
hasLimitsOfShape πŸ“–mathematicalβ€”CategoryTheory.Limits.HasLimitsOfShape
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
β€”hasLimit
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
hasLimitsOfSize πŸ“–mathematicalβ€”CategoryTheory.Limits.HasLimitsOfSize
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
β€”hasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits
imageMonoOver_arrow πŸ“–mathematicalβ€”arrow
imageMonoOver
CategoryTheory.Limits.image.ΞΉ
β€”β€”
image_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over.isMono
image
CategoryTheory.Functor.preimage
imageMonoOver
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
forget
CategoryTheory.Over.homMk
CategoryTheory.Limits.image.lift
CategoryTheory.Comma.right
CategoryTheory.Limits.image
CategoryTheory.Limits.image.ΞΉ
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CommaMorphism.left
CategoryTheory.Limits.factorThruImage
β€”β€”
image_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over.isMono
image
imageMonoOver
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
β€”β€”
instIsClosedUnderLimitsOfShapeOverIsMono πŸ“–mathematicalβ€”CategoryTheory.ObjectProperty.IsClosedUnderLimitsOfShape
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
β€”CategoryTheory.Limits.IsLimit.hom_ext
CategoryTheory.cancel_mono
CategoryTheory.Category.assoc
CategoryTheory.Over.w
instIsIsoLeftDiscretePUnitHomFullSubcategoryOverIsMono πŸ“–mathematicalβ€”CategoryTheory.IsIso
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.CommaMorphism.left
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
β€”CategoryTheory.Functor.map_isIso
instIsRightAdjointOverForget πŸ“–mathematicalβ€”CategoryTheory.Functor.IsRightAdjoint
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over.isMono
forget
β€”β€”
instMonoHomDiscretePUnitObjOverForget πŸ“–mathematicalβ€”CategoryTheory.Mono
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
forget
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
β€”mono
isIso_iff_isIso_hom_left πŸ“–mathematicalβ€”CategoryTheory.IsIso
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.CommaMorphism.left
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
β€”CategoryTheory.isIso_iff_of_reflects_iso
CategoryTheory.reflectsIsomorphisms_comp
CategoryTheory.reflectsIsomorphisms_of_full_and_faithful
CategoryTheory.ObjectProperty.full_ΞΉ
CategoryTheory.ObjectProperty.faithful_ΞΉ
CategoryTheory.Over.forget_reflects_iso
isIso_iff_isIso_left πŸ“–mathematicalβ€”CategoryTheory.IsIso
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.CommaMorphism.left
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
β€”isIso_iff_isIso_hom_left
isThin πŸ“–mathematicalβ€”Quiver.IsThin
CategoryTheory.MonoOver
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
β€”CategoryTheory.InducedCategory.hom_ext
CategoryTheory.Over.OverMorphism.ext
CategoryTheory.cancel_mono
mono
CategoryTheory.Over.w
isoMk_hom πŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.CategoryStruct.comp
CategoryTheory.Iso.hom
arrow
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
isoMk
homMk
β€”β€”
isoMk_inv πŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.CategoryStruct.comp
CategoryTheory.Iso.hom
arrow
CategoryTheory.Iso.inv
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
isoMk
homMk
β€”β€”
lift_comm πŸ“–mathematicalCategoryTheory.Mono
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over.isMono
forget
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.comp
lift
β€”β€”
lift_map_hom πŸ“–mathematicalCategoryTheory.Mono
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over.isMono
forget
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor.comp
CategoryTheory.Functor.map
lift
β€”β€”
lift_obj_arrow πŸ“–mathematicalCategoryTheory.Mono
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over.isMono
forget
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
arrow
lift
β€”β€”
lift_obj_obj πŸ“–mathematicalCategoryTheory.Mono
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over.isMono
forget
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.ObjectProperty.FullSubcategory.obj
lift
β€”β€”
mapIso_counitIso πŸ“–mathematicalβ€”CategoryTheory.Equivalence.counitIso
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
mapIso
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
map
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.id
CategoryTheory.Iso.symm
mapComp
CategoryTheory.CategoryStruct.id
CategoryTheory.instMonoId
CategoryTheory.eqToIso
mapId
β€”β€”
mapIso_functor πŸ“–mathematicalβ€”CategoryTheory.Equivalence.functor
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
mapIso
map
CategoryTheory.Iso.hom
β€”β€”
mapIso_inverse πŸ“–mathematicalβ€”CategoryTheory.Equivalence.inverse
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
mapIso
map
CategoryTheory.Iso.inv
β€”β€”
mapIso_unitIso πŸ“–mathematicalβ€”CategoryTheory.Equivalence.unitIso
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
mapIso
CategoryTheory.Iso.symm
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
map
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
CategoryTheory.Functor.id
CategoryTheory.Iso.trans
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
mapComp
CategoryTheory.CategoryStruct.id
CategoryTheory.instMonoId
CategoryTheory.eqToIso
mapId
β€”β€”
map_obj_arrow πŸ“–mathematicalβ€”arrow
CategoryTheory.Functor.obj
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
β€”β€”
map_obj_left πŸ“–mathematicalβ€”CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.Functor.obj
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
map
β€”β€”
mk'_arrow πŸ“–mathematicalβ€”arrowβ€”mk_arrow
mk'_coe' πŸ“–mathematicalβ€”CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
β€”mk_coe
mkArrowIso_hom_hom_left πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.Comma.left
arrow
mono
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Iso.hom
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
mkArrowIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”mono
mkArrowIso_inv_hom_left πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.Comma.left
arrow
mono
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Iso.inv
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
mkArrowIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”mono
mk_arrow πŸ“–mathematicalβ€”arrowβ€”β€”
mk_coe πŸ“–mathematicalβ€”CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
β€”β€”
mk_obj πŸ“–mathematicalβ€”CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
β€”β€”
mono πŸ“–mathematicalβ€”CategoryTheory.Mono
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
arrow
β€”CategoryTheory.ObjectProperty.FullSubcategory.property
mono_obj_hom πŸ“–mathematicalβ€”CategoryTheory.Mono
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
β€”CategoryTheory.ObjectProperty.FullSubcategory.property
pullback_obj_arrow πŸ“–mathematicalβ€”arrow
CategoryTheory.Functor.obj
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
pullback
CategoryTheory.Limits.pullback.snd
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
forget
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
β€”β€”
pullback_obj_left πŸ“–mathematicalβ€”CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.Functor.obj
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
pullback
CategoryTheory.Limits.pullback
arrow
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
β€”β€”
w πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.CommaMorphism.left
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
arrow
β€”CategoryTheory.Over.w
w_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.CommaMorphism.left
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
arrow
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w

CategoryTheory.Over

Definitions

NameCategoryTheorems
isMono πŸ“–CompOp
98 mathmath: CategoryTheory.Subobject.factors_iff, CategoryTheory.MonoOver.mk_coe, CategoryTheory.MonoOver.congr_unitIso, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivityβ‚€.F_obj, CategoryTheory.MonoOver.mapIso_functor, CategoryTheory.MonoOver.mk_obj, CategoryTheory.MonoOver.isIso_left_iff_subobjectMk_eq, CategoryTheory.MonoOver.hasColimitsOfSize_of_hasStrongEpiMonoFactorisations, CategoryTheory.MonoOver.instIsRightAdjointOverForget, CategoryTheory.MonoOver.isIso_iff_subobjectMk_eq, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_hom_left_comp, CategoryTheory.MonoOver.mapIso_unitIso, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.F_map, CategoryTheory.MonoOver.mapIso_counitIso, Types.monoOverEquivalenceSet_inverse_map, CategoryTheory.MonoOver.mkArrowIso_hom_hom_left, CategoryTheory.MonoOver.map_obj_left, CategoryTheory.MonoOver.isIso_hom_left_iff_subobjectMk_eq, CategoryTheory.essentiallySmall_monoOver, CategoryTheory.MonoOver.pullback_obj_arrow, CategoryTheory.Subfunctor.equivalenceMonoOver_inverse_map, CategoryTheory.MonoOver.image_map, CategoryTheory.Subfunctor.equivalenceMonoOver_functor_map, CategoryTheory.Subobject.inf_eq_map_pullback', CategoryTheory.monoOver_terminal_to_subterminals_comp, CategoryTheory.MonoOver.image_obj, CategoryTheory.Subfunctor.equivalenceMonoOver_inverse_obj, CategoryTheory.MonoOver.bot_left, CategoryTheory.MonoOver.map_obj_arrow, CategoryTheory.subterminalsEquivMonoOverTerminal_inverse_map, CategoryTheory.Subobject.lower_comm, CategoryTheory.MonoOver.w, CategoryTheory.MonoOver.bot_arrow_eq_zero, CategoryTheory.MonoOver.hasFiniteLimits, CategoryTheory.Subfunctor.equivalenceMonoOver_functor_obj, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivityβ‚€.F_map, CategoryTheory.isEventuallyConstant_of_isArtinianObject, CategoryTheory.MonoOver.mk'_coe', CategoryTheory.MonoOver.mono, CategoryTheory.MonoOver.forget_obj_left, CategoryTheory.Subobject.instIsEquivalenceMonoOverRepresentative, Types.monoOverEquivalenceSet_functor_map, CategoryTheory.subterminalsEquivMonoOverTerminal_inverse_obj_obj, Types.monoOverEquivalenceSet_functor_obj, CategoryTheory.MonoOver.hasLimitsOfShape, CategoryTheory.MonoOver.congr_functor, CategoryTheory.MonoOver.isIso_iff_isIso_hom_left, CategoryTheory.MonoOver.congr_inverse, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_Ο€_assoc, CategoryTheory.Subobject.lowerEquivalence_counitIso, CategoryTheory.subterminalsEquivMonoOverTerminal_functor_map, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.functorToMonoOver_map, CategoryTheory.MonoOver.inf_map_app, CategoryTheory.MonoOver.isThin, CategoryTheory.MonoOver.mkArrowIso_inv_hom_left, CategoryTheory.MonoOver.w_assoc, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_hom_left_comp_assoc, CategoryTheory.MonoOver.pullback_obj_left, CategoryTheory.Subobject.lowerEquivalence_unitIso, CategoryTheory.Subfunctor.equivalenceMonoOver_unitIso, CategoryTheory.MonoOver.subobjectMk_le_mk_of_hom, CategoryTheory.subterminalsEquivMonoOverTerminal_unitIso, CategoryTheory.MonoOver.forget_obj_hom, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_comp, CategoryTheory.MonoOver.commSqOfHasStrongEpiMonoFactorisation, CategoryTheory.subterminalsEquivMonoOverTerminal_counitIso, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_Ο€, Types.monoOverEquivalenceSet_inverse_obj, CategoryTheory.MonoOver.hasLimit, CategoryTheory.MonoOver.instMonoHomDiscretePUnitObjOverForget, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.F_obj, CategoryTheory.MonoOver.inf_obj, CategoryTheory.MonoOver.top_left, Types.monoOverEquivalenceSet_unitIso, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.functorToMonoOver_obj, CategoryTheory.Subobject.representative_coe, CategoryTheory.MonoOver.full_map, CategoryTheory.Subobject.inf_eq_map_pullback, CategoryTheory.MonoOver.mapIso_inverse, CategoryTheory.MonoOver.congr_counitIso, CategoryTheory.Subobject.lowerEquivalence_inverse, CategoryTheory.Subobject.lowerEquivalence_functor, CategoryTheory.isEventuallyConstant_of_isNoetherianObject, CategoryTheory.MonoOver.faithful_exists, CategoryTheory.isNoetherianObject_iff_isEventuallyConstant, Types.monoOverEquivalenceSet_counitIso, CategoryTheory.subterminalsEquivMonoOverTerminal_functor_obj_obj, CategoryTheory.isArtinianObject_iff_isEventuallyConstant, CategoryTheory.MonoOver.faithful_map, CategoryTheory.MonoOver.hasLimitsOfSize, CategoryTheory.subterminals_to_monoOver_terminal_comp_forget, CategoryTheory.Subobject.representative_arrow, CategoryTheory.Subfunctor.equivalenceMonoOver_counitIso, CategoryTheory.MonoOver.mono_obj_hom, CategoryTheory.MonoOver.instIsClosedUnderLimitsOfShapeOverIsMono, CategoryTheory.MonoOver.isIso_iff_isIso_left, CategoryTheory.MonoOver.instIsIsoLeftDiscretePUnitHomFullSubcategoryOverIsMono, CategoryTheory.essentiallySmall_monoOver_iff_small_subobject

---

← Back to Index