| Name | Category | Theorems |
arrow π | CompOp | 26 mathmath: mk_arrow, mkArrowIso_hom_hom_left, pullback_obj_arrow, CategoryTheory.Subfunctor.equivalenceMonoOver_inverse_map, CategoryTheory.Subobject.inf_eq_map_pullback', lift_obj_arrow, CategoryTheory.Subfunctor.equivalenceMonoOver_inverse_obj, bot_arrow, map_obj_arrow, w, bot_arrow_eq_zero, imageMonoOver_arrow, mono, top_arrow, inf_map_app, mkArrowIso_inv_hom_left, mk'_arrow, w_assoc, pullback_obj_left, CategoryTheory.Subfunctor.equivalenceMonoOver_unitIso, forget_obj_hom, commSqOfHasStrongEpiMonoFactorisation, inf_obj, CategoryTheory.Subobject.inf_eq_map_pullback, CategoryTheory.Subobject.representative_arrow, CategoryTheory.Subfunctor.equivalenceMonoOver_counitIso
|
coconeOfHasStrongEpiMonoFactorisation π | CompOp | β |
exists π | CompOp | 1 mathmath: faithful_exists
|
existsIsoMap π | CompOp | β |
existsPullbackAdj π | CompOp | β |
forget π | CompOp | 9 mathmath: instIsRightAdjointOverForget, pullback_obj_arrow, image_map, CategoryTheory.monoOver_terminal_to_subterminals_comp, forget_obj_left, inf_map_app, forget_obj_hom, instMonoHomDiscretePUnitObjOverForget, CategoryTheory.subterminals_to_monoOver_terminal_comp_forget
|
forgetImage π | CompOp | β |
fullyFaithfulForget π | CompOp | β |
homMk π | CompOp | 15 mathmath: isoMk_inv, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.F_map, Types.monoOverEquivalenceSet_inverse_map, CategoryTheory.Subfunctor.equivalenceMonoOver_functor_map, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivityβ.F_map, isoMk_hom, CategoryTheory.subterminalsEquivMonoOverTerminal_functor_map, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.functorToMonoOver_map, inf_map_app, CategoryTheory.Subfunctor.equivalenceMonoOver_unitIso, CategoryTheory.subterminalsEquivMonoOverTerminal_unitIso, CategoryTheory.subterminalsEquivMonoOverTerminal_counitIso, Types.monoOverEquivalenceSet_unitIso, Types.monoOverEquivalenceSet_counitIso, CategoryTheory.Subfunctor.equivalenceMonoOver_counitIso
|
image π | CompOp | 2 mathmath: image_map, image_obj
|
imageForgetAdj π | CompOp | β |
imageMonoOver π | CompOp | 3 mathmath: image_map, image_obj, imageMonoOver_arrow
|
instCoeOut π | CompOp | β |
isColimitCoconeOfHasStrongEpiMonoFactorisation π | CompOp | β |
isoMk π | CompOp | 7 mathmath: congr_unitIso, isoMk_inv, isoMk_hom, CategoryTheory.subterminalsEquivMonoOverTerminal_counitIso, Types.monoOverEquivalenceSet_unitIso, congr_counitIso, CategoryTheory.Subfunctor.equivalenceMonoOver_counitIso
|
liftComp π | CompOp | β |
liftId π | CompOp | β |
liftIso π | CompOp | β |
liftStructOfHasStrongEpiMonoFactorisation π | CompOp | β |
map π | CompOp | 10 mathmath: mapIso_functor, mapIso_unitIso, mapIso_counitIso, map_obj_left, map_obj_arrow, inf_map_app, inf_obj, full_map, mapIso_inverse, faithful_map
|
mapComp π | CompOp | 2 mathmath: mapIso_unitIso, mapIso_counitIso
|
mapId π | CompOp | 2 mathmath: mapIso_unitIso, mapIso_counitIso
|
mapIso π | CompOp | 7 mathmath: congr_unitIso, mapIso_functor, mapIso_unitIso, mapIso_counitIso, congr_inverse, mapIso_inverse, congr_counitIso
|
mapPullbackAdj π | CompOp | β |
mk π | CompOp | β |
mk' π | CompOp | β |
mk'ArrowIso π | CompOp | β |
mkArrowIso π | CompOp | 2 mathmath: mkArrowIso_hom_hom_left, mkArrowIso_inv_hom_left
|
pullback π | CompOp | 4 mathmath: pullback_obj_arrow, inf_map_app, pullback_obj_left, inf_obj
|
pullbackComp π | CompOp | β |
pullbackId π | CompOp | β |
pullbackMapSelf π | CompOp | β |
pullbackObjIsoOfIsPullback π | CompOp | β |
reflective π | CompOp | β |
slice π | CompOp | β |
strongEpiMonoFactorisationSigmaDesc π | CompOp | 1 mathmath: commSqOfHasStrongEpiMonoFactorisation
|