📁 Source: Mathlib/Combinatorics/Additive/SubsetSum.lean
subsetSum
card_add_card_subsetSum_lt_card_subsetSum_insert_max
card_choose_two_lt_card_subsetSum_of_nonneg
card_succ_choose_two_lt_card_subsetSum_of_pos
mem_subsetSum_iff
nonneg_of_mem_subsetSum
subsetSum_erase_zero
subsetSum_mono
subsetSum_nonempty
subset_subsetSum
vadd_finset_subsetSum_subset_subsetSum_insert
zero_mem_subsetSum
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
card
Finset
instInsert
LT.lt.le
LT.lt.ne'
add_pos_of_pos_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
lt_add_of_lt_of_nonneg
insert_subset_iff
mem_of_subset
subset_insert
Mathlib.Tactic.GCongr.rel_imp_rel
instIsTransSubset
subset_refl
instReflSubset
LT.lt.false
add_lt_add_left
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
Nat.instIsOrderedAddMonoid
card_insert_of_notMem
card_image_of_injOn
IsCancelAdd.toIsLeftCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
card_union_of_disjoint
le_imp_le_of_le_of_le
card_le_card
union_subset
le_refl
Preorder.toLE
Nat.choose
Nat.choose_le_choose
tsub_le_iff_right
Nat.instOrderedSub
pred_card_le_card_erase
LE.le.lt_of_ne
mem_of_mem_erase
ne_of_mem_erase
induction_on_max
zero_add
Nat.choose_succ_self
mem_insert_of_mem
Nat.choose_succ_left
Nat.choose_one_right
add_right_comm
add_assoc
lt_imp_lt_of_le_of_le
add_le_add_right
mem_insert_self
instMembership
instHasSubset
sum
sum_congr
sum_nonneg
erase
le_antisymm
erase_subset
mem_erase
sum_erase
image_mono
powerset_mono
Nonempty
sum_singleton
HVAdd.hVAdd
instHVAdd
vaddFinset
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
AddMonoid.toAddAction
sum_insert
empty_subset
sum_empty
---
← Back to Index