Documentation

Mathlib.Combinatorics.Additive.SubsetSum

Subset sums #

This file defines the subset sum of a finite subset of a commutative monoid.

References #

def Finset.subsetSum {M : Type u_1} [DecidableEq M] [AddCommMonoid M] (A : Finset M) :

The subset-sum of a finite set A in a commutative monoid is the set of all sums of subsets of A.

Equations
    Instances For
      theorem Finset.mem_subsetSum_iff {M : Type u_1} [DecidableEq M] [AddCommMonoid M] {A : Finset M} {a : M} :
      a โˆˆ A.subsetSum โ†” โˆƒ B โІ A, โˆ‘ b โˆˆ B, b = a
      theorem Finset.nonneg_of_mem_subsetSum {M : Type u_1} [DecidableEq M] [AddCommMonoid M] {A : Finset M} [LinearOrder M] [IsOrderedCancelAddMonoid M] (A_nonneg : โˆ€ x โˆˆ A, 0 โ‰ค x) (x : M) :
      x โˆˆ A.subsetSum โ†’ 0 โ‰ค x
      theorem Finset.card_add_card_subsetSum_lt_card_subsetSum_insert_max {M : Type u_1} [DecidableEq M] [AddCommMonoid M] {A : Finset M} {a : M} [LinearOrder M] [IsOrderedCancelAddMonoid M] (hA : โˆ€ x โˆˆ A, 0 < x) (hAa : โˆ€ x โˆˆ A, x < a) (ha : 0 < a) :