Documentation Verification Report

ConcreteColorings

📁 Source: Mathlib/Combinatorics/SimpleGraph/ConcreteColorings.lean

Statistics

MetricCount
DefinitionscompleteEquipartiteGraph, bicoloring_of_even, tricoloring, bicoloring, pathGraph_two_embedding
5
Theoremseven_length_iff_congr, odd_length_iff_not_congr, three_le_chromaticNumber_of_odd_loop, chromaticNumber_cycleGraph_of_even, chromaticNumber_cycleGraph_of_odd, chromaticNumber_eq_two_iff, chromaticNumber_le_two_iff_isBipartite, chromaticNumber_pathGraph, completeEquipartiteGraph_colorable, two_colorable_iff_forall_loop_even
10
Total15

SimpleGraph

Definitions

NameCategoryTheorems
pathGraph_two_embedding 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
chromaticNumber_cycleGraph_of_even 📖mathematicalEvenchromaticNumber
cycleGraph
ENat
instOfNatAtLeastTwo
ENat.instNatCast
Nat.instAtLeastTwoHAddOfNat
Coloring.colorable
le_antisymm
Nat.instAtLeastTwoHAddOfNat
Colorable.chromaticNumber_le
Nat.instCanonicallyOrderedAdd
tsub_zero
Nat.instOrderedSub
two_le_chromaticNumber_of_adj
chromaticNumber_cycleGraph_of_odd 📖mathematicalOdd
Nat.instSemiring
chromaticNumber
cycleGraph
ENat
instOfNatAtLeastTwo
ENat.instNatCast
Nat.instAtLeastTwoHAddOfNat
Coloring.colorable
le_antisymm
Nat.instAtLeastTwoHAddOfNat
Colorable.chromaticNumber_le
Nat.not_odd_iff
cycleGraph_EulerianCircuit_length
Walk.three_le_chromaticNumber_of_odd_loop
chromaticNumber_eq_two_iff 📖mathematicalchromaticNumber
ENat
instOfNatAtLeastTwo
ENat.instNatCast
Nat.instAtLeastTwoHAddOfNat
IsBipartite
Nat.instAtLeastTwoHAddOfNat
chromaticNumber_le_two_iff_isBipartite
two_le_chromaticNumber_iff_ne_bot
ENat.eq_of_forall_natCast_le_iff
LE.le.trans
chromaticNumber_le_two_iff_isBipartite 📖mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
chromaticNumber
instOfNatAtLeastTwo
ENat.instNatCast
Nat.instAtLeastTwoHAddOfNat
IsBipartite
chromaticNumber_le_iff_colorable
chromaticNumber_pathGraph 📖mathematicalchromaticNumber
pathGraph
ENat
instOfNatAtLeastTwo
ENat.instNatCast
Nat.instAtLeastTwoHAddOfNat
Coloring.colorable
le_antisymm
Nat.instAtLeastTwoHAddOfNat
Colorable.chromaticNumber_le
zero_add
Nat.instCharZero
two_le_chromaticNumber_of_adj
completeEquipartiteGraph_colorable 📖mathematicalColorable
completeEquipartiteGraph
two_colorable_iff_forall_loop_even 📖mathematicalColorable
Even
Walk.length
Nat.instAtLeastTwoHAddOfNat
LE.le.trans
Walk.three_le_chromaticNumber_of_odd_loop
Colorable.chromaticNumber_le
colorable_iff_forall_connectedComponents
ConnectedComponent.nonempty_supp
Connected.preconnected
ConnectedComponent.connected_toSimpleGraph
Walk.length_map
Walk.length_append
Walk.length_concat
Walk.length_reverse
add_right_comm
Even.add_one
Nat.even_iff

SimpleGraph.Coloring

Definitions

NameCategoryTheorems
completeEquipartiteGraph 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
even_length_iff_congr 📖mathematicalEven
SimpleGraph.Walk.length
DFunLike.coe
SimpleGraph.Coloring
RelHom.instFunLike
SimpleGraph.Adj
SimpleGraph.completeGraph
not_iff
valid
odd_length_iff_not_congr 📖mathematicalOdd
Nat.instSemiring
SimpleGraph.Walk.length
DFunLike.coe
SimpleGraph.Coloring
RelHom.instFunLike
SimpleGraph.Adj
SimpleGraph.completeGraph
Nat.not_even_iff_odd
even_length_iff_congr

SimpleGraph.Walk

Theorems

NameKindAssumesProvesValidatesDepends On
three_le_chromaticNumber_of_odd_loop 📖mathematicalOdd
Nat.instSemiring
length
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
instOfNatAtLeastTwo
ENat.instNatCast
Nat.instAtLeastTwoHAddOfNat
SimpleGraph.chromaticNumber
Classical.by_contradiction
Nat.instAtLeastTwoHAddOfNat
Order.le_of_lt_add_one
not_le
SimpleGraph.chromaticNumber_le_iff_colorable
SimpleGraph.Coloring.odd_length_iff_not_congr

SimpleGraph.cycleGraph

Definitions

NameCategoryTheorems
bicoloring_of_even 📖CompOp
tricoloring 📖CompOp

SimpleGraph.pathGraph

Definitions

NameCategoryTheorems
bicoloring 📖CompOp

---

← Back to Index