Documentation

Mathlib.Combinatorics.SimpleGraph.ConcreteColorings

Concrete colorings of common graphs #

This file defines colorings for some common graphs.

Main declarations #

Bicoloring of a path graph

Equations
    Instances For

      Embedding of pathGraph 2 into the first two elements of pathGraph n for 2 โ‰ค n

      Equations
        Instances For
          theorem SimpleGraph.Coloring.even_length_iff_congr {ฮฑ : Type u_1} {G : SimpleGraph ฮฑ} (c : G.Coloring Bool) {u v : ฮฑ} (p : G.Walk u v) :
          theorem SimpleGraph.Coloring.odd_length_iff_not_congr {ฮฑ : Type u_1} {G : SimpleGraph ฮฑ} (c : G.Coloring Bool) {u v : ฮฑ} (p : G.Walk u v) :
          theorem SimpleGraph.Walk.three_le_chromaticNumber_of_odd_loop {ฮฑ : Type u_1} {G : SimpleGraph ฮฑ} {u : ฮฑ} (p : G.Walk u u) (hOdd : Odd p.length) :

          Bicoloring of a cycle graph of even size

          Equations
            Instances For

              Tricoloring of a cycle graph

              Equations
                Instances For

                  The injection (xโ‚, xโ‚‚) โ†ฆ xโ‚ is always an r-coloring of a completeEquipartiteGraph r ยท.

                  Equations
                    Instances For
                      theorem SimpleGraph.two_colorable_iff_forall_loop_even {ฮฑ : Type u_1} {G : SimpleGraph ฮฑ} :
                      G.Colorable 2 โ†” โˆ€ (u : ฮฑ) (w : G.Walk u u), Even w.length