Documentation Verification Report

Defs

πŸ“ Source: Mathlib/Combinatorics/SimpleGraph/Ends/Defs.lean

Statistics

MetricCount
DefinitionsComponentCompl, coeGraph, hom, setLike, supp, componentComplFunctor, componentComplMk, end, instPartialOrderComponentCompl
9
Theoremscoe_inj, disjoint_right, exists_adj_boundary_pair, exists_eq_mk, hom_eq_iff_le, hom_eq_iff_not_disjoint, hom_infinite, hom_mk, hom_refl, hom_trans, ind, infinite_iff_in_all_ranges, mem_of_adj, mem_supp_iff, nonempty, notMem_of_mem, subset_hom, supp_inj, supp_injective, supp_injective_iff, componentComplFunctor_map, componentComplFunctor_obj, componentComplMk_eq_of_adj, componentComplMk_mem, componentComplMk_mem_hom, componentCompl_finite, componentCompl_nonempty_of_infinite, end_hom_mk_of_mk, infinite_iff_in_eventualRange
29
Total38

SimpleGraph

Definitions

NameCategoryTheorems
ComponentCompl πŸ“–CompOp
15 mathmath: ComponentCompl.subset_hom, ComponentCompl.disjoint_right, ComponentCompl.pairwise_disjoint, componentComplFunctor_obj, componentComplMk_mem, ComponentCompl.supp_injective, ComponentCompl.coe_inj, componentCompl_finite, ComponentCompl.hom_eq_iff_not_disjoint, ComponentCompl.mem_supp_iff, ComponentCompl.hom_eq_iff_le, ComponentCompl.nonempty, componentComplMk_mem_hom, ComponentCompl.exists_adj_boundary_pair, componentCompl_nonempty_of_infinite
componentComplFunctor πŸ“–CompOp
5 mathmath: componentComplFunctor_obj, infinite_iff_in_eventualRange, componentComplFunctor_finite, componentComplFunctor_nonempty_of_infinite, componentComplFunctor_map
componentComplMk πŸ“–CompOp
6 mathmath: ComponentCompl.hom_mk, componentComplMk_mem, componentComplMk_eq_of_adj, ComponentCompl.exists_eq_mk, ComponentCompl.mem_supp_iff, componentComplMk_mem_hom
end πŸ“–CompOp
3 mathmath: instIsEmptyElemForallObjOppositeFinsetComponentComplFunctorEndOfFinite, end_componentCompl_infinite, nonempty_ends_of_infinite
instPartialOrderComponentCompl πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
componentComplFunctor_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
Opposite
Finset
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
Finset.partialOrder
CategoryTheory.types
componentComplFunctor
ComponentCompl.hom
SetLike.coe
Finset.instSetLike
Opposite.unop
β€”β€”
componentComplFunctor_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
Finset
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
Finset.partialOrder
CategoryTheory.types
componentComplFunctor
ComponentCompl
SetLike.coe
Finset.instSetLike
Opposite.unop
β€”β€”
componentComplMk_eq_of_adj πŸ“–mathematicalSet
Set.instMembership
Adj
componentComplMkβ€”ConnectedComponent.eq
Adj.reachable
componentComplMk_mem πŸ“–mathematicalSet
Set.instMembership
ComponentCompl
SetLike.instMembership
ComponentCompl.setLike
componentComplMk
β€”β€”
componentComplMk_mem_hom πŸ“–mathematicalSet
Set.instMembership
Set.instHasSubset
ComponentCompl
SetLike.instMembership
ComponentCompl.setLike
ComponentCompl.hom
componentComplMk
β€”ComponentCompl.subset_hom
componentComplMk_mem
componentCompl_finite πŸ“–mathematicalβ€”Finite
ComponentCompl
SetLike.coe
Finset
Finset.instSetLike
β€”Finset.eq_empty_or_nonempty
Finset.coe_empty
Set.compl_empty
Preconnected.subsingleton_connectedComponent
Fact.out
Finite.of_equiv
Finite.of_subsingleton
ComponentCompl.exists_adj_boundary_pair
Adj.symm
Pairwise.eq
ComponentCompl.pairwise_disjoint
Set.not_disjoint_iff
Subtype.finite
Set.Finite.to_subtype
Set.Finite.ofFinset
Finite.of_injective_finite_range
componentCompl_nonempty_of_infinite πŸ“–mathematicalβ€”ComponentCompl
SetLike.coe
Finset
Finset.instSetLike
β€”Set.Infinite.nonempty
Set.Finite.infinite_compl
Finset.finite_toSet
end_hom_mk_of_mk πŸ“–mathematicalSet
Set.instMembership
end
Finset
Finset.instMembership
Opposite.unop
componentComplMk
Multiset
Multiset.instMembership
Finset.val
SetLike.coe
Finset.instSetLike
Set.notMem_subset
CategoryTheory.le_of_op_hom
PartialOrder.toPreorder
Finset.partialOrder
β€”Set.notMem_subset
CategoryTheory.le_of_op_hom
infinite_iff_in_eventualRange πŸ“–mathematicalβ€”Set.Infinite
ComponentCompl.supp
SetLike.coe
Finset
Finset.instSetLike
Opposite.unop
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
Finset.partialOrder
CategoryTheory.types
componentComplFunctor
Set
Set.instMembership
CategoryTheory.Functor.eventualRange
β€”ComponentCompl.infinite_iff_in_all_ranges
CategoryTheory.le_of_op_hom

SimpleGraph.ComponentCompl

Definitions

NameCategoryTheorems
coeGraph πŸ“–CompOpβ€”
hom πŸ“–CompOp
10 mathmath: subset_hom, hom_mk, hom_trans, hom_refl, hom_infinite, hom_eq_iff_not_disjoint, infinite_iff_in_all_ranges, hom_eq_iff_le, SimpleGraph.componentComplMk_mem_hom, SimpleGraph.componentComplFunctor_map
setLike πŸ“–CompOp
11 mathmath: subset_hom, disjoint_right, pairwise_disjoint, SimpleGraph.componentComplMk_mem, coe_inj, hom_eq_iff_not_disjoint, mem_supp_iff, hom_eq_iff_le, nonempty, SimpleGraph.componentComplMk_mem_hom, exists_adj_boundary_pair
supp πŸ“–CompOp
6 mathmath: SimpleGraph.infinite_iff_in_eventualRange, SimpleGraph.end_componentCompl_infinite, supp_inj, supp_injective, supp_injective_iff, infinite_iff_in_all_ranges

Theorems

NameKindAssumesProvesValidatesDepends On
coe_inj πŸ“–mathematicalβ€”SetLike.coe
SimpleGraph.ComponentCompl
setLike
β€”SetLike.coe_set_eq
disjoint_right πŸ“–mathematicalβ€”Disjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
SimpleGraph.ComponentCompl
setLike
β€”Set.disjoint_iff
exists_adj_boundary_pair πŸ“–mathematicalSimpleGraph.Preconnected
Set.Nonempty
SimpleGraph.ComponentCompl
SetLike.instMembership
setLike
Set
Set.instMembership
SimpleGraph.Adj
β€”ind
Set.disjoint_iff
disjoint_right
Set.eq_univ_iff_forall
SimpleGraph.Walk.exists_boundary_dart
SimpleGraph.componentComplMk_mem
mem_of_adj
Mathlib.Tactic.Push.not_and_eq
Set.mem_univ
exists_eq_mk πŸ“–mathematicalβ€”SimpleGraph.componentComplMkβ€”nonempty
hom_eq_iff_le πŸ“–mathematicalSet
Set.instHasSubset
hom
SetLike.coe
SimpleGraph.ComponentCompl
setLike
β€”subset_hom
ind
hom_eq_iff_not_disjoint πŸ“–mathematicalSet
Set.instHasSubset
hom
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
SimpleGraph.ComponentCompl
setLike
β€”Set.not_disjoint_iff
ind
hom_infinite πŸ“–mathematicalSet
Set.instHasSubset
Set.Infinite
SetLike.coe
SimpleGraph.ComponentCompl
setLike
homβ€”Set.Infinite.mono
subset_hom
hom_mk πŸ“–mathematicalSet
Set.instMembership
Set.instHasSubset
hom
SimpleGraph.componentComplMk
Set.notMem_subset
β€”β€”
hom_refl πŸ“–mathematicalβ€”hom
subset_refl
Set
Set.instHasSubset
Set.instReflSubset
β€”subset_refl
Set.instReflSubset
Set.mapsTo_id
SimpleGraph.induceHom_id
SimpleGraph.ConnectedComponent.map_id
hom_trans πŸ“–mathematicalSet
Set.instHasSubset
hom
HasSubset.Subset.trans
Set.instIsTransSubset
β€”HasSubset.Subset.trans
Set.instIsTransSubset
SimpleGraph.ConnectedComponent.map_comp
Set.MapsTo.comp
SimpleGraph.induceHom_comp
ind πŸ“–β€”SimpleGraph.componentComplMkβ€”β€”SimpleGraph.ConnectedComponent.ind
infinite_iff_in_all_ranges πŸ“–mathematicalβ€”Set.Infinite
supp
SetLike.coe
Finset
Finset.instSetLike
hom
Multiset
Multiset.instMembership
Finset.val
β€”Set.Infinite.nonempty
Set.Infinite.diff
Finset.finite_toSet
Finset.subset_union_left
nonempty
disjoint_right
Set.Finite.coe_toFinset
Finset.coe_union
hom_eq_iff_le
mem_of_adj πŸ“–β€”SimpleGraph.ComponentCompl
SetLike.instMembership
setLike
Set
Set.instMembership
SimpleGraph.Adj
β€”β€”SimpleGraph.ConnectedComponent.eq
SimpleGraph.Adj.reachable
SimpleGraph.Adj.symm
mem_supp_iff πŸ“–mathematicalβ€”SimpleGraph.ComponentCompl
SetLike.instMembership
setLike
SimpleGraph.componentComplMk
β€”β€”
nonempty πŸ“–mathematicalβ€”Set.Nonempty
SetLike.coe
SimpleGraph.ComponentCompl
setLike
β€”ind
notMem_of_mem πŸ“–mathematicalSimpleGraph.ComponentCompl
SetLike.instMembership
setLike
Set
Set.instMembership
β€”Set.disjoint_iff
disjoint_right
subset_hom πŸ“–mathematicalSet
Set.instHasSubset
SetLike.coe
SimpleGraph.ComponentCompl
setLike
hom
β€”β€”
supp_inj πŸ“–mathematicalβ€”suppβ€”supp_injective
supp_injective πŸ“–mathematicalβ€”SimpleGraph.ComponentCompl
Set
supp
β€”SimpleGraph.ConnectedComponent.indβ‚‚
SimpleGraph.Reachable.refl
supp_injective_iff πŸ“–mathematicalβ€”suppβ€”supp_injective

---

← Back to Index