Documentation

Mathlib.Combinatorics.SimpleGraph.Ends.Defs

Ends #

This file contains a definition of the ends of a simple graph, as sections of the inverse system assigning, to each finite set of vertices, the connected components of its complement.

@[reducible, inline]
abbrev SimpleGraph.ComponentCompl {V : Type u} (G : SimpleGraph V) (K : Set V) :

The components outside a given set of vertices K

Equations
    Instances For
      @[reducible, inline]
      abbrev SimpleGraph.componentComplMk {V : Type u} {K : Set V} (G : SimpleGraph V) {v : V} (vK : v โˆ‰ K) :

      The connected component of v in G.induce Kแถœ.

      Equations
        Instances For
          def SimpleGraph.ComponentCompl.supp {V : Type u} {G : SimpleGraph V} {K : Set V} (C : G.ComponentCompl K) :
          Set V

          The set of vertices of G making up the connected component C

          Equations
            Instances For
              theorem SimpleGraph.ComponentCompl.supp_injective_iff {V : Type u} {G : SimpleGraph V} {K : Set V} {aโ‚ aโ‚‚ : G.ComponentCompl K} :
              aโ‚ = aโ‚‚ โ†” aโ‚.supp = aโ‚‚.supp
              @[simp]
              theorem SimpleGraph.ComponentCompl.mem_supp_iff {V : Type u} {G : SimpleGraph V} {K : Set V} {v : V} {C : G.ComponentCompl K} :
              v โˆˆ C โ†” โˆƒ (vK : v โˆ‰ K), G.componentComplMk vK = C
              theorem SimpleGraph.componentComplMk_mem {V : Type u} {K : Set V} (G : SimpleGraph V) {v : V} (vK : v โˆ‰ K) :
              theorem SimpleGraph.componentComplMk_eq_of_adj {V : Type u} {K : Set V} (G : SimpleGraph V) {v w : V} (vK : v โˆ‰ K) (wK : w โˆ‰ K) (a : G.Adj v w) :

              In an infinite graph, the set of components out of a finite set is nonempty.

              def SimpleGraph.ComponentCompl.lift {V : Type u} {G : SimpleGraph V} {K : Set V} {ฮฒ : Sort u_1} (f : โฆƒv : Vโฆ„ โ†’ v โˆ‰ K โ†’ ฮฒ) (h : โˆ€ โฆƒv w : Vโฆ„ (hv : v โˆ‰ K) (hw : w โˆ‰ K), G.Adj v w โ†’ f hv = f hw) :
              G.ComponentCompl K โ†’ ฮฒ

              A ComponentCompl specialization of Quot.lift, where soundness has to be proved only for adjacent vertices.

              Equations
                Instances For
                  theorem SimpleGraph.ComponentCompl.ind {V : Type u} {G : SimpleGraph V} {K : Set V} {ฮฒ : G.ComponentCompl K โ†’ Prop} (f : โˆ€ โฆƒv : Vโฆ„ (hv : v โˆ‰ K), ฮฒ (G.componentComplMk hv)) (C : G.ComponentCompl K) :
                  ฮฒ C
                  @[reducible, inline]
                  abbrev SimpleGraph.ComponentCompl.coeGraph {V : Type u} {G : SimpleGraph V} {K : Set V} (C : G.ComponentCompl K) :
                  SimpleGraph โ†ฅC

                  The induced graph on the vertices C.

                  Equations
                    Instances For
                      theorem SimpleGraph.ComponentCompl.coe_inj {V : Type u} {G : SimpleGraph V} {K : Set V} {C D : G.ComponentCompl K} :
                      โ†‘C = โ†‘D โ†” C = D
                      @[simp]
                      theorem SimpleGraph.ComponentCompl.nonempty {V : Type u} {G : SimpleGraph V} {K : Set V} (C : G.ComponentCompl K) :
                      (โ†‘C).Nonempty
                      theorem SimpleGraph.ComponentCompl.exists_eq_mk {V : Type u} {G : SimpleGraph V} {K : Set V} (C : G.ComponentCompl K) :
                      โˆƒ (v : V) (h : v โˆ‰ K), G.componentComplMk h = C
                      theorem SimpleGraph.ComponentCompl.notMem_of_mem {V : Type u} {G : SimpleGraph V} {K : Set V} {C : G.ComponentCompl K} {c : V} (cC : c โˆˆ C) :
                      c โˆ‰ K
                      theorem SimpleGraph.ComponentCompl.pairwise_disjoint {V : Type u} {G : SimpleGraph V} {K : Set V} :
                      Pairwise fun (C D : G.ComponentCompl K) => Disjoint โ†‘C โ†‘D
                      theorem SimpleGraph.ComponentCompl.mem_of_adj {V : Type u} {G : SimpleGraph V} {K : Set V} {C : G.ComponentCompl K} (c d : V) :
                      c โˆˆ C โ†’ d โˆ‰ K โ†’ G.Adj c d โ†’ d โˆˆ C

                      Any vertex adjacent to a vertex of C and not lying in K must lie in C.

                      theorem SimpleGraph.ComponentCompl.exists_adj_boundary_pair {V : Type u} {G : SimpleGraph V} {K : Set V} (Gc : G.Preconnected) (hK : K.Nonempty) (C : G.ComponentCompl K) :
                      โˆƒ (ck : V ร— V), ck.1 โˆˆ C โˆง ck.2 โˆˆ K โˆง G.Adj ck.1 ck.2

                      Assuming G is preconnected and K not empty, given any connected component C outside of K, there exists a vertex k โˆˆ K adjacent to a vertex v โˆˆ C.

                      @[reducible, inline]
                      abbrev SimpleGraph.ComponentCompl.hom {V : Type u} {G : SimpleGraph V} {K L : Set V} (h : K โІ L) (C : G.ComponentCompl L) :

                      If K โІ L, the components outside of L are all contained in a single component outside of K.

                      Equations
                        Instances For
                          theorem SimpleGraph.ComponentCompl.subset_hom {V : Type u} {G : SimpleGraph V} {K L : Set V} (C : G.ComponentCompl L) (h : K โІ L) :
                          โ†‘C โІ โ†‘(hom h C)
                          theorem SimpleGraph.componentComplMk_mem_hom {V : Type u} {K L : Set V} (G : SimpleGraph V) {v : V} (vK : v โˆ‰ K) (h : L โІ K) :
                          theorem SimpleGraph.ComponentCompl.hom_eq_iff_le {V : Type u} {G : SimpleGraph V} {K L : Set V} (C : G.ComponentCompl L) (h : K โІ L) (D : G.ComponentCompl K) :
                          hom h C = D โ†” โ†‘C โІ โ†‘D
                          theorem SimpleGraph.ComponentCompl.hom_refl {V : Type u} {G : SimpleGraph V} {L : Set V} (C : G.ComponentCompl L) :
                          hom โ‹ฏ C = C
                          theorem SimpleGraph.ComponentCompl.hom_trans {V : Type u} {G : SimpleGraph V} {K L M : Set V} (C : G.ComponentCompl L) (h : K โІ L) (h' : M โІ K) :
                          hom โ‹ฏ C = hom h' (hom h C)
                          theorem SimpleGraph.ComponentCompl.hom_mk {V : Type u} {G : SimpleGraph V} {K L : Set V} {v : V} (vnL : v โˆ‰ L) (h : K โІ L) :
                          hom h (G.componentComplMk vnL) = G.componentComplMk โ‹ฏ
                          theorem SimpleGraph.ComponentCompl.hom_infinite {V : Type u} {G : SimpleGraph V} {K L : Set V} (C : G.ComponentCompl L) (h : K โІ L) (Cinf : (โ†‘C).Infinite) :
                          (โ†‘(hom h C)).Infinite
                          theorem SimpleGraph.ComponentCompl.infinite_iff_in_all_ranges {V : Type u} {G : SimpleGraph V} {K : Finset V} (C : G.ComponentCompl โ†‘K) :
                          C.supp.Infinite โ†” โˆ€ (L : Finset V) (h : K โІ L), โˆƒ (D : G.ComponentCompl โ†‘L), hom h D = C
                          instance SimpleGraph.componentCompl_finite {V : Type u} {G : SimpleGraph V} [G.LocallyFinite] [Gpc : Fact G.Preconnected] (K : Finset V) :
                          Finite (G.ComponentCompl โ†‘K)

                          For a locally finite preconnected graph, the number of components outside of any finite set is finite.

                          The functor assigning, to a finite set in V, the set of connected components in its complement.

                          Equations
                            Instances For
                              @[simp]
                              theorem SimpleGraph.componentComplFunctor_map {V : Type u} (G : SimpleGraph V) {Xโœ Yโœ : (Finset V)แต’แต–} (f : Xโœ โŸถ Yโœ) (C : G.ComponentCompl โ†‘(Opposite.unop Xโœ)) :

                              The end of a graph, defined as the sections of the functor component_compl_functor .

                              Equations
                                Instances For
                                  theorem SimpleGraph.end_hom_mk_of_mk {V : Type u} (G : SimpleGraph V) {s : (j : (Finset V)แต’แต–) โ†’ G.componentComplFunctor.obj j} (sec : s โˆˆ G.end) {K L : (Finset V)แต’แต–} (h : L โŸถ K) {v : V} (vnL : v โˆ‰ Opposite.unop L) (hs : s L = G.componentComplMk vnL) :
                                  s K = G.componentComplMk โ‹ฏ