Documentation Verification Report

Epi

📁 Source: Mathlib/Condensed/Epi.lean

Statistics

MetricCount
Definitions0
Theoremsepi_iff_locallySurjective_on_compHaus, epi_iff_surjective_on_stonean, epi_iff_locallySurjective_on_compHaus, epi_iff_surjective_on_stonean, epi_iff_locallySurjective_on_compHaus, epi_iff_surjective_on_stonean
6
Total6

Condensed

Theorems

NameKindAssumesProvesValidatesDepends On
epi_iff_locallySurjective_on_compHaus 📖mathematicalCategoryTheory.Epi
Condensed
instCategoryCondensed
DFunLike.coe
CategoryTheory.Functor.obj
Opposite
CompHaus
CategoryTheory.Category.opposite
CompHausLike.category
CategoryTheory.Sheaf.val
CategoryTheory.coherentTopology
Opposite.op
CategoryTheory.ConcreteCategory.hom
CategoryTheory.NatTrans.app
CategoryTheory.Sheaf.Hom.val
CategoryTheory.Functor.map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
CompHaus.instHasExplicitFiniteCoproductsTrue
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
CompHaus.instHasExplicitPullbacksTrue
CompHaus.instPreregular
CategoryTheory.Sheaf.isLocallySurjective_iff_epi'
CategoryTheory.coherentTopology.isLocallySurjective_iff
CategoryTheory.regularTopology.isLocallySurjective_iff
List.TFAE.out
CompHaus.effectiveEpi_tfae
epi_iff_surjective_on_stonean 📖mathematicalCategoryTheory.Limits.HasLimitsOfShape
CategoryTheory.StructuredArrow
Opposite
Stonean
CategoryTheory.Category.opposite
CompHausLike.category
ExtremallyDisconnected
TopCat.carrier
TopCat.str
CompHaus
CategoryTheory.Functor.op
Stonean.toCompHaus
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Epi
Condensed
instCategoryCondensed
CategoryTheory.Functor.obj
CategoryTheory.Sheaf.val
CategoryTheory.coherentTopology
Opposite.op
Stonean.compHaus
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
CategoryTheory.NatTrans.app
CategoryTheory.Sheaf.Hom.val
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
Stonean.instHasExplicitFiniteCoproductsExtremallyDisconnectedCarrier
Stonean.instHasExplicitPullbacksOfInclusionsExtremallyDisconnectedCarrier
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
Stonean.instPreregular
CategoryTheory.Functor.epi_map_iff_epi
CategoryTheory.preservesEpimorphisms_of_preservesColimitsOfShape
CategoryTheory.Limits.PreservesFiniteColimits.preservesFiniteColimits
CategoryTheory.Limits.PreservesColimits.preservesFiniteColimits
CategoryTheory.Functor.instPreservesColimitsOfSizeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Equivalence.isEquivalence_inverse
CategoryTheory.reflectsEpimorphisms_of_reflectsColimitsOfShape
CategoryTheory.Limits.ReflectsFiniteColimits.reflects
CategoryTheory.Limits.instReflectsFiniteColimitsOfReflectsColimits
CategoryTheory.Limits.fullyFaithful_reflectsColimits
CategoryTheory.Equivalence.full_inverse
CategoryTheory.Equivalence.faithful_inverse
Stonean.instProjective
CategoryTheory.Equivalence.isEquivalence_functor
CategoryTheory.Equivalence.full_functor
CategoryTheory.Equivalence.faithful_functor
CategoryTheory.Sheaf.isLocallySurjective_iff_epi'
CategoryTheory.extensiveTopology.isLocallySurjective_iff

CondensedMod

Theorems

NameKindAssumesProvesValidatesDepends On
epi_iff_locallySurjective_on_compHaus 📖mathematicalCategoryTheory.Epi
CondensedMod
instCategoryCondensed
ModuleCat
ModuleCat.moduleCategory
DFunLike.coe
CategoryTheory.Functor.obj
Opposite
CompHaus
CategoryTheory.Category.opposite
CompHausLike.category
CategoryTheory.Sheaf.val
CategoryTheory.coherentTopology
Opposite.op
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
CategoryTheory.NatTrans.app
CategoryTheory.Sheaf.Hom.val
CategoryTheory.Functor.map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
Condensed.epi_iff_locallySurjective_on_compHaus
CategoryTheory.ConcreteCategory.instHasFunctorialSurjectiveInjectiveFactorization
CategoryTheory.Abelian.instHasStrongEpiMonoFactorisations
ModuleCat.forget_preservesMonomorphisms
ModuleCat.forget_preservesEpimorphisms
CategoryTheory.GrothendieckTopology.instWEqualsLocallyBijectiveOfHasWeakSheafifyOfHasSheafComposeOfPreservesSheafificationOfReflectsIsomorphismsForget
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
CompHaus.instHasExplicitFiniteCoproductsTrue
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
CompHaus.instHasExplicitPullbacksTrue
CompHaus.instPreregular
CategoryTheory.sheafToPresheaf_isRightAdjoint
CategoryTheory.Functor.instPreservesLimitsOfShapeOfIsRightAdjoint
ModuleCat.instIsRightAdjointForgetLinearMapIdCarrier
ModuleCat.hasLimit
small_subtype
small_Pi
UnivLE.small
UnivLE.self
ModuleCat.hasColimitsOfShape
AddCommGrpCat.hasColimitsOfShape
Opposite.small
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
ModuleCat.FilteredColimits.forget_preservesFilteredColimits
CategoryTheory.isFiltered_op_of_isCofiltered
CategoryTheory.isCofiltered_of_directed_ge_nonempty
SemilatticeInf.instIsCodirectedOrder
ModuleCat.instReflectsIsomorphismsForgetLinearMapIdCarrier
CategoryTheory.hasSheafCompose_of_preservesMulticospan
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.GrothendieckTopology.instPreservesSheafificationForgetOfPreservesLimitsOfHasColimitsOfShapeOfPreservesColimitsOfShapeOppositeCoverOfHasLimitsOfShapeWalkingMulticospanOfReflectsIsomorphisms
ModuleCat.forget_preservesLimits
CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits
ModuleCat.hasLimits'
CategoryTheory.instHasSheafifyOfPreservesLimitsForgetOfHasFiniteLimitsOfSmallOppositeCover
CategoryTheory.Abelian.hasFiniteLimits
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
CategoryTheory.Abelian.toIsNormalMonoCategory
CategoryTheory.Limits.instPreservesFiniteProductsOfPreservesFiniteLimits
CategoryTheory.Limits.PreservesLimits.preservesFiniteLimits
epi_iff_surjective_on_stonean 📖mathematicalCategoryTheory.Epi
CondensedMod
instCategoryCondensed
ModuleCat
ModuleCat.moduleCategory
ModuleCat.carrier
CategoryTheory.Functor.obj
Opposite
CompHaus
CategoryTheory.Category.opposite
CompHausLike.category
CategoryTheory.Sheaf.val
CategoryTheory.coherentTopology
Opposite.op
Stonean.compHaus
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
CategoryTheory.NatTrans.app
CategoryTheory.Sheaf.Hom.val
CategoryTheory.Limits.hasLimitsOfSizeShrink
ModuleCat.hasLimits'
Condensed.epi_iff_surjective_on_stonean
CategoryTheory.ConcreteCategory.instHasFunctorialSurjectiveInjectiveFactorization
CategoryTheory.Abelian.instHasStrongEpiMonoFactorisations
ModuleCat.forget_preservesMonomorphisms
ModuleCat.forget_preservesEpimorphisms
CategoryTheory.Limits.instPreservesFiniteProductsOfPreservesFiniteLimits
CategoryTheory.Limits.PreservesLimits.preservesFiniteLimits
ModuleCat.forget_preservesLimits
CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits
CategoryTheory.GrothendieckTopology.instWEqualsLocallyBijectiveOfHasWeakSheafifyOfHasSheafComposeOfPreservesSheafificationOfReflectsIsomorphismsForget
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
Stonean.instHasExplicitFiniteCoproductsExtremallyDisconnectedCarrier
Stonean.instHasExplicitPullbacksOfInclusionsExtremallyDisconnectedCarrier
CategoryTheory.sheafToPresheaf_isRightAdjoint
CategoryTheory.Functor.instPreservesLimitsOfShapeOfIsRightAdjoint
ModuleCat.instIsRightAdjointForgetLinearMapIdCarrier
ModuleCat.hasLimit
small_subtype
small_Pi
UnivLE.small
UnivLE.self
ModuleCat.hasColimitsOfShape
AddCommGrpCat.hasColimitsOfShape
Opposite.small
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
ModuleCat.FilteredColimits.forget_preservesFilteredColimits
CategoryTheory.isFiltered_op_of_isCofiltered
CategoryTheory.isCofiltered_of_directed_ge_nonempty
SemilatticeInf.instIsCodirectedOrder
ModuleCat.instReflectsIsomorphismsForgetLinearMapIdCarrier
CategoryTheory.hasSheafCompose_of_preservesMulticospan
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.GrothendieckTopology.instPreservesSheafificationForgetOfPreservesLimitsOfHasColimitsOfShapeOfPreservesColimitsOfShapeOppositeCoverOfHasLimitsOfShapeWalkingMulticospanOfReflectsIsomorphisms
CategoryTheory.instHasSheafifyOfPreservesLimitsForgetOfHasFiniteLimitsOfSmallOppositeCover
CategoryTheory.Abelian.hasFiniteLimits
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
CategoryTheory.Abelian.toIsNormalMonoCategory

CondensedSet

Theorems

NameKindAssumesProvesValidatesDepends On
epi_iff_locallySurjective_on_compHaus 📖mathematicalCategoryTheory.Epi
CondensedSet
instCategoryCondensed
CategoryTheory.types
CategoryTheory.NatTrans.app
Opposite
CompHaus
CategoryTheory.Category.opposite
CompHausLike.category
CategoryTheory.Sheaf.val
CategoryTheory.coherentTopology
CategoryTheory.Sheaf.Hom.val
Opposite.op
CategoryTheory.Functor.map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
Condensed.epi_iff_locallySurjective_on_compHaus
CategoryTheory.instHasFunctorialSurjectiveInjectiveFactorizationTypeHom
CategoryTheory.GrothendieckTopology.instWEqualsLocallyBijectiveTypeHom
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
CompHaus.instHasExplicitFiniteCoproductsTrue
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
CompHaus.instHasExplicitPullbacksTrue
CompHaus.instPreregular
CategoryTheory.instHasSheafifyType
CategoryTheory.hasSheafCompose_of_preservesMulticospan
CategoryTheory.Functor.corepresentable_preservesLimit
CategoryTheory.Types.instIsCorepresentableForgetTypeHom
CategoryTheory.SheafOfTypes.balanced
CategoryTheory.Limits.instPreservesFiniteProductsOfPreservesFiniteLimits
CategoryTheory.Limits.PreservesLimits.preservesFiniteLimits
CategoryTheory.Types.instPreservesLimitsOfSizeForgetTypeHom
epi_iff_surjective_on_stonean 📖mathematicalCategoryTheory.Epi
CondensedSet
instCategoryCondensed
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CompHaus
CategoryTheory.Category.opposite
CompHausLike.category
CategoryTheory.Sheaf.val
CategoryTheory.coherentTopology
Opposite.op
Stonean.compHaus
CategoryTheory.NatTrans.app
CategoryTheory.Sheaf.Hom.val
Condensed.epi_iff_surjective_on_stonean
CategoryTheory.instHasFunctorialSurjectiveInjectiveFactorizationTypeHom
CategoryTheory.Limits.instPreservesFiniteProductsOfPreservesFiniteLimits
CategoryTheory.Limits.PreservesLimits.preservesFiniteLimits
CategoryTheory.Types.instPreservesLimitsOfSizeForgetTypeHom
CategoryTheory.Limits.Types.hasLimitsOfShape
UnivLE.small
UnivLE.self
CategoryTheory.GrothendieckTopology.instWEqualsLocallyBijectiveTypeHom
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
Stonean.instHasExplicitFiniteCoproductsExtremallyDisconnectedCarrier
Stonean.instHasExplicitPullbacksOfInclusionsExtremallyDisconnectedCarrier
CategoryTheory.instHasSheafifyType
CategoryTheory.hasSheafCompose_of_preservesMulticospan
CategoryTheory.Functor.corepresentable_preservesLimit
CategoryTheory.Types.instIsCorepresentableForgetTypeHom
CategoryTheory.SheafOfTypes.balanced

---

← Back to Index