Epimorphisms of condensed objects #
This file characterises epimorphisms of condensed sets and condensed R-modules for any ring R,
as those morphisms which are objectwise surjective on Stonean (see
CondensedSet.epi_iff_surjective_on_stonean and CondensedMod.epi_iff_surjective_on_stonean).
theorem
Condensed.epi_iff_locallySurjective_on_compHaus
(A : Type u')
[CategoryTheory.Category.{v', u'} A]
{FA : A โ A โ Type u_1}
{CA : A โ Type v'}
[(X Y : A) โ FunLike (FA X Y) (CA X) (CA Y)]
[CategoryTheory.ConcreteCategory A FA]
[CategoryTheory.ConcreteCategory.HasFunctorialSurjectiveInjectiveFactorization A]
{X Y : Condensed A}
(f : X โถ Y)
[(CategoryTheory.coherentTopology CompHaus).WEqualsLocallyBijective A]
[CategoryTheory.HasSheafify (CategoryTheory.coherentTopology CompHaus) A]
[(CategoryTheory.coherentTopology CompHaus).HasSheafCompose (CategoryTheory.forget A)]
[CategoryTheory.Balanced (CategoryTheory.Sheaf (CategoryTheory.coherentTopology CompHaus) A)]
[CategoryTheory.Limits.PreservesFiniteProducts (CategoryTheory.forget A)]
:
CategoryTheory.Epi f โ โ (S : CompHaus) (y : CategoryTheory.ToType (Y.val.obj (Opposite.op S))),
โ (S' : CompHaus) (ฯ : S' โถ S) (_ : Function.Surjective โ(CategoryTheory.ConcreteCategory.hom ฯ)) (x :
CategoryTheory.ToType (X.val.obj (Opposite.op S'))),
(CategoryTheory.ConcreteCategory.hom (f.val.app (Opposite.op S'))) x = (CategoryTheory.ConcreteCategory.hom (Y.val.map (Opposite.op ฯ))) y
theorem
Condensed.epi_iff_surjective_on_stonean
(A : Type u')
[CategoryTheory.Category.{v', u'} A]
{FA : A โ A โ Type u_1}
{CA : A โ Type v'}
[(X Y : A) โ FunLike (FA X Y) (CA X) (CA Y)]
[CategoryTheory.ConcreteCategory A FA]
[CategoryTheory.ConcreteCategory.HasFunctorialSurjectiveInjectiveFactorization A]
{X Y : Condensed A}
(f : X โถ Y)
[CategoryTheory.Limits.PreservesFiniteProducts (CategoryTheory.forget A)]
[โ (X : CompHausแตแต), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.StructuredArrow X Stonean.toCompHaus.op) A]
[(CategoryTheory.extensiveTopology Stonean).WEqualsLocallyBijective A]
[CategoryTheory.HasSheafify (CategoryTheory.extensiveTopology Stonean) A]
[(CategoryTheory.extensiveTopology Stonean).HasSheafCompose (CategoryTheory.forget A)]
[CategoryTheory.Balanced (CategoryTheory.Sheaf (CategoryTheory.extensiveTopology Stonean) A)]
:
CategoryTheory.Epi f โ โ (S : Stonean), Function.Surjective โ(CategoryTheory.ConcreteCategory.hom (f.val.app (Opposite.op S.compHaus)))
theorem
CondensedSet.epi_iff_locallySurjective_on_compHaus
{X Y : CondensedSet}
(f : X โถ Y)
:
CategoryTheory.Epi f โ โ (S : CompHaus) (y : Y.val.obj (Opposite.op S)),
โ (S' : CompHaus) (ฯ : S' โถ S) (_ : Function.Surjective โ(CategoryTheory.ConcreteCategory.hom ฯ)) (x :
X.val.obj (Opposite.op S')), f.val.app (Opposite.op S') x = Y.val.map (Opposite.op ฯ) y
theorem
CondensedSet.epi_iff_surjective_on_stonean
{X Y : CondensedSet}
(f : X โถ Y)
:
CategoryTheory.Epi f โ โ (S : Stonean), Function.Surjective (f.val.app (Opposite.op S.compHaus))
theorem
CondensedMod.epi_iff_locallySurjective_on_compHaus
(R : Type (u + 1))
[Ring R]
{X Y : CondensedMod R}
(f : X โถ Y)
:
CategoryTheory.Epi f โ โ (S : CompHaus) (y : โ(Y.val.obj (Opposite.op S))),
โ (S' : CompHaus) (ฯ : S' โถ S) (_ : Function.Surjective โ(CategoryTheory.ConcreteCategory.hom ฯ)) (x :
โ(X.val.obj (Opposite.op S'))),
(CategoryTheory.ConcreteCategory.hom (f.val.app (Opposite.op S'))) x = (CategoryTheory.ConcreteCategory.hom (Y.val.map (Opposite.op ฯ))) y
theorem
CondensedMod.epi_iff_surjective_on_stonean
(R : Type (u + 1))
[Ring R]
{X Y : CondensedMod R}
(f : X โถ Y)
:
CategoryTheory.Epi f โ โ (S : Stonean), Function.Surjective โ(CategoryTheory.ConcreteCategory.hom (f.val.app (Opposite.op S.compHaus)))